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Feasible impulsive transfers from a circular parking orbit to some hyperbolic excess
velocity vector are constructed, and used as initial guesses in solving corresponding, min-
imum �V , constrained parameter optimization problems. Much attention is devoted to
quantifying and enhancing the proximity of the feasible escape to the optimal, thereby
improving convergence. The impulsive solutions may be further utilized as initial guesses
for a procedure to determine optimal, �nite-burn, continuous transfers between celestial
bodies. Signi�cant fuel costs associated with certain escape geometries motivates in-depth
understanding of this fundamental optimization problem. Reducing these costs provides
increased: landing site coverage, abort capability, and parking orbit geometries which may
have otherwise not met mission constraints. 1-impulse and 3-impulse (time-of-
ight free
and �xed) escapes are presented, which exhibit improved feasible to optimal proximity
when compared with past methods. Furthermore, qualitative criteria are developed, which
indicate the number of impulses to use (1, 3, or the potential addition of a 4th), as functions
of the escape geometry. Although emphasis is placed on Moon-to-Earth returns, all pa-
rameters are made non-dimensional such that the results and qualitative criteria presented
are applicable to generalized departures from a circular orbit about any celestial body.

Nomenclature

i and j subscripts indicating orbit (0 to f) or maneuver number (1 to N)
ei and ai eccentricity and semi-major axis of orbit i
v+
1 target outgoing hyperbolic excess velocity vector, with magnitude v+

1
TOF time-of-
ight for escape (t1 to tf )
t0 and tf initial epoch and time of �nal maneuver
ti time at which maneuver i occurs
J scalar performance index (total cost), J = �V =

PN
i=1 �vi

Xp parameter vector
C and D equality and inequality constraint vectors, respectively
�vi impulsive maneuver vector i, with magnitude �vi
�rel and �rel relative declination and right ascension angles of v+

1 w.r.t. Orbit 0 frame
rpi

and rai
pericenter and apocenter radius vectors of orbit i, with magnitudes rpi

and rai

vpi
pericenter velocity vector of orbit i, with magnitude vpi

rmin minimum allowable pericenter radius
rmax maximum allowable apocenter radius
hi angular momentum vector of orbit i, with magnitude hi
ĥ�f initial selection for the departure hyperbola angular momentum direction, ĥf
� standard gravitational parameter of the central body
�+
1 true anomaly associated with v+

1 on the departure hyperbola
v�1 incoming hyperbolic excess velocity vector with magnitude v�1
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� turning angle of the departure hyperbola
r�vi position vector where maneuver i occurs, with magnitude r�vi

�ij true anomaly where maneuver i occurs on orbit j
Tpi

time period of orbit i
v�1 Keplerian propagated outgoing hyperbolic excess velocity vector
Xerr
p non-dimensional parameter vector error

� minimum angle possible between ĥ0 and ĥf
� an angle factor which rotates ĥ�f to ĥf about v+

1
IG initial guess
(̂ ) normalized vector

I. Introduction

The problem of transferring from a circular parking orbit to some departure hyperbola v+
1 vector, with

minimum �V , is a fundamental one in space exploration. Gerbracht and Penzo,1 who established much
of the early work on this topic, consider it to be ‘the most important and promising trajectory optimization
problem.’ Its application provides increased landing site coverage and launch/injection opportunities at ce-
lestial bodies, as well as allowing for parking orbits which may have otherwise not met mission constraints
due to the large departure/arrival maneuvers they require. This paper is a continuation and improvement
upon work presented by Ocampo and Saudemont,2 and focuses on the robust construction of feasible 1 and
3-impulse escapes which, when used as initial guesses (IG), reliably converge to the minimum �V solutions.
Poor quality IG escapes, exhibiting di�erent behavior than the optimal, tend to produce convergence prob-
lems, a reality which has in part motivated this work. In addition to improving the heritage IG methods in,2

a new method for targeting a time-�xed 3-impulse escape is presented along with some qualitative analysis
indicating the number of impulses to use for particular escape geometries.

Similar to what was done in,1 parameter optimization (direct method) is used to determine optimal
impulsive escapes as opposed to Lawden’s primer vector theory (indirect method),3 which is the impulsive
equivalent of the calculus of variations, applicable when the escape time (TOF ) is known. In addition to the
work of,1 Gobetz and Doll4 provide a summary of optimal impulsive transfers and Edelbaum5 has considered
primer optimal 3 and 4-impulse escapes from a circular orbit when the TOF is known.

The problem is easily manipulated to include impulsive captures, where v+
1 is then the incoming excess

velocity vector, with the same optimal solution as the escape, but in reverse. For simplicity, attention is
restricted to escapes, where a v+

1 vector may correspond to a back-propagated Earth re-entry state or some
other post-escape target. Therefore, the optimal impulsive escapes may be propagated and di�erentially
corrected to match continuity with a trajectory from some backward propagated state, and �nally converted
to an optimal �nite burn trajectory as described in.2 However, the central focus in this work is the develop-
ment of IG methods which produce escapes in close proximity to their corresponding optimal escapes for a
variety of v+

1 vectors, including those involving unfavorably large plane changes.

This paper is organized as follows:

� Section II describes the problem in terms of background and motivation, the assumptions being made,
and the type of optimization being performed.

� Section III begins the construction of the 1-impulse and 3-impulse time-free and time-�xed IG escapes
and their respective parameter optimization problems. This section begins with derivations applicable
to all methods, followed by subsections devoted to each escape: section III-A is devoted to the 1-impulse,
followed by the 3-impulse time-free in section III-B, and the 3-impulse time-�xed in section III-C. Each
subsection is split into parts: �rst the construction of the IG followed immediately by the optimization
problem. For example, section III-B-1 outlines the 3-impulse time-free IG, followed by the optimization
problem in section III-B-2, and an alternate optimization problem in section III-B-3.

� Section IV contains results corresponding to each of the three impulsive escapes methods (e.g. sec-
tion IV-A contains 1-impulse results, whereas section IV-C contains results applicable to the 3-impulse
time-�xed escape). Finally, section IV-D examines the question of how many impulses to use for par-
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ticular escape geometries and makes comparisons between the various escape methods (i.e. the number
of impulses and time-free vs. time-�xed).

II. Description of the Problem

The problem is described in general terms as follows: given an initial state on a known circular orbit
(e0 = 0) about the central body, at some epoch (t0), determine the optimal impulsive transfer sequence that
will take the spacecraft to the speci�ed v+

1 vector. The optimal impulsive escape (of N number of impulses)
can be converged upon using a Sequential Quadratic Programming (SQP) algorithm, where a parameter
vector Xp is found which minimizes the total cost (performance index J =

PN
i=1 k�vik) subject to a vector

of equality constraints C and a vector of inequality constraints D. The optimal escape may be either a 1, 3,
or 4-impulse sequence, dependent on the particular problem geometry, and some switching criteria.

Two-body orbital dynamics are used throughout in determining the IG solutions and the optimal, thereby
avoiding the need for numerical integration of the equations of motion. It is assumed that the presence of 3rd
body and/or non-spherical perturbations will only alter the optimal solutions slightly. Escapes from circular
parking orbits (a special case of the general ellipse) are given primary attention in this work, but these results
may be used in continuation for the more general problem of escape from an ellipse. The 2-impulse escape
is omitted in this work, since past work4 has shown that from a circular parking orbit to any v+

1 vector, the
2-impulse is never simultaneously of lower cost than both the 1 and 3-impulse solutions.

Escapes from the Moon are used as primary numerical examples; however, the methods are general and
may be applied to any celestial body. For trans-Earth injection maneuvers from the Moon, Condon et al.6 has
determined a reasonable range of escape asymptotes which vary with v+

1 magnitude between 0.8 to 1.3 km/s
and relative declinations �rel from -90� to 90�. These ranges are utilized for much of the numerical results,
but to maintain generality and applicability to all escapes from any celestial body the input parameters are
made non-dimensional with respect to the pericenter radius rp0 and speed vp0 of the parking orbit. For
3-impulse escapes, in the absence of 3rd bodies, the optimal occurs when the intermediate orbit(s) pericenter
and apocenter radii approach zero and in�nity, respectively.4 Therefore, these radii must be constrained
during the optimization process, based on problem speci�c limits: rmin and rmax. A characteristic escape
velocity is then de�ned as v+

1=vp0 , and characteristic radii limits are de�ned as rmin=rp0 and rmax=rp0 . Also,
throughout this work it is assumed that rmin � rp0 and rmax > rp0 . The limits used in the majority of the
numerical results were derived to yield a minimum altitude at the Moon of 100-km, and a maximum 1-2 day
3-impulse TOF (rmin > 1838 km and 17633 km � rmax � 30000 km).

Furthermore, a new 3-impulse IG method is developed when the sequence time-of-
ight (TOF ) is speci-
�ed. The motivation for this is to provide quick assessments, and potential optimization, of the abort cost
as a function of TOF , for a particular v+

1 and parking orbit. The range of TOF used may be proportional
to the range of rmax used in the time-free problem.

III. General Methodology

The parking orbit perifocal unit vectors (r̂p0 , v̂p0 , and ĥ0) are used to de�ne a body centered and �xed
reference frame which serves as the basis for v+

1. Where h0 is the angular momentum vector of the parking
orbit, and rp0 and vp0 are the pericenter position and velocity vectors of the parking orbit (all assumed
known). v+

1 is then described using spherical angles relative to this frame: declination (�rel) and right
ascension (�rel). And v+

1 is normalized, with respect to its magnitude kv+
1k = v+

1.

v+
1 = kv+

1k

0B@ cos �rel cos�rel
cos �rel sin�rel

sin �rel

1CA v̂+
1 =

v+
1

kv+
1k

(1)

Also, v+
1 > 0 is required so that parabolic escape orbits are excluded. Limiting the parking orbit to be

circular further simpli�es the problem, making the escapes independent of �rel and the orientation of the
parking orbit in inertial space.

For labeling purposes, the initial parking orbit will be called Orbit 0 and Orbit f will be the hyperbolic
orbit resulting after the completion of the �nal maneuver and containing the target v+

1. The number
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of intermediate orbits is dependent on the number of impulses: for the 1-impulse escape, there are no
intermediary orbits, for the 3-impulse escape there are two intermediary orbits (Orbits 1 and 2). Various
orbit parameters will have subscripts (0, 1, 2, 3, f ) corresponding to these orbits. For the 3-impulse time-free
IG, Orbits 0 and 1 will be coplanar with angular momentum direction given by ĥ0, and Orbits 2 and f will
be coplanar and normal to ĥf . Similarly for the 3-impulse time-�xed IG, Orbits 0 and 1 will be coplanar,
but Orbit 2 will have angular momentum direction given by ĥ2, which will not necessarily be along ĥf .

A key component in generating near-optimal IG solutions involves proper selection of ĥf , which is only
required to be normal to v̂+

1. An initial selection of ĥf , called ĥ�f can be made on the basis of three important
sub-cases, as is done in much of the literature on this subject including the heritage work of.2 However,
depending on the number of impulses used, as well as the particular escape geometry, ĥ�f , may be quite
far from optimal. The rotation of ĥ�f to ĥf , by an angle � about v̂+

1, is an important aspect of the IG
improvement developed in this paper. The sub-cases are then:

1.
���ĥ0 � v̂+

1

��� = 0 This means that ĥ0 is normal to v̂+
1: no plane change is required. The departure

orbit plane can be coincident with the parking orbit plane, and is chosen to be so. In this case, their
respective angular momentum vectors are thus collinear, yielding two possible choices: ĥ�f = �ĥ0.

ĥ�f = +ĥ0 (2)

is chosen for a zero angle plane change. The other choice requires a 180� plane change which implies
an expensive retrograde maneuver and is thus discarded.

2.
���ĥ0 � v̂+

1

��� = 1 This means that ĥ0 is collinear to v̂+
1; they are either in the same or opposite direction:

a 90� plane change is required. The departure orbit plane is normal to the parking orbit plane. Any
vector normal to v̂+

1 can serve as ĥ�f , which is also normal to ĥ0. ĥ�f is chosen to be

ĥ�f =
r̂p0 � v̂+

1

r̂p0 � v̂+
1


 (3)

3. 0 <
���ĥ0 � v̂+

1

��� < 1 This is the most general case: the departure orbit is neither normal nor coplanar

to the parking orbit. ĥ�f is chosen to be the unit vector normal to v̂+
1 that is closest to ĥ0, so that the

angle between the parking orbit and departure orbit planes is minimized. This is determined from:

ĥ�f =
v̂+
1 �

�
ĥ0 � v̂+

1

�



v̂+
1 �

�
ĥ0 � v̂+

1

�


 (4)

It is noted that, ĥ�f is always de�ned if 0 �
���ĥ0 � v̂+

1

��� < 1 and is along the projection of ĥ0 onto the

plane that is normal to v̂+
1, and therefore minimizes the plane change.

Once ĥf is determined, the remaining elements of the departure hyperbola can be computed. The
semi-major axis is known,

af = � ��
v+
1
�2 (5)

where � is the gravitational parameter of the central body. The pericenter speed and radius on the departure
hyperbola are given by,

vpf
=

s�
v+
1
�2

+
2�
rpf

rpf
= af (1� ef ) (6)

and the angular momentum magnitude and eccentricity are

hf =
q
�af (1� ef 2) = rpf

vpf
ef =

s
1� hf

af�
(7)
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For the 3-impulse IG constructions, rpf
will be chosen as some ratio of rmin, but for the 1-impulse IG rpf

is
determined on a case by case basis as a function of ef . Once ef is known the turning angle � and the true
anomaly associated with v+

1 on the departure hyperbola �+
1 may be computed,

� = 2 arcsin
�

1
ef

�
(8)

�+
1 = arccos

�
�1
ef

�
(9)

The incoming hyperbolic excess velocity vector, v̂�1, is given by

v̂�1 = (cos �) v̂+
1 + (sin �)

�
v̂+
1 � ĥf

�
(10)

The direction of the pericenter position and velocity vectors of the hyperbola are then given for all cases as,

r̂pf
=

v̂�1 � v̂+
1

v̂�1 � v̂+
1


 ; v̂pf

=
v̂�1 + v̂+

1

v̂�1 + v̂+
1


 (11)

And �nally, the pericenter position and velocity vectors of the hyperbola are

rpf
= rpf

r̂pf
; vpf

= vpf
v̂pf

(12)

A. Single-Impulse Escape

The single injection maneuver must be made at some point along the parking orbit, and therefore the TOF
is considered to be zero. There is one location on the parking orbit which minimizes the �V to take the
spacecraft from Orbit 0 to Orbit f (the post maneuver hyperbola containing the target v+

1).

1. 1-Impulse IG Construction

The inputs to the 1-impulse IG are: v+
1, the parking orbit elements, and the state at t0. For a single-

impulse from a circular parking orbit, the ĥ�f unit vectors computed in Eqs. (2)-(4) are su�ciently close
to the optimal and so are maintained in the construction of the IG (ĥf = ĥ�f ). Ocampo and Saudemont2

consider improvement to the IG when e0 6= 0, but otherwise this construction follows their work. The
injection maneuver and its magnitude is given in Eq. (13),

�v1 = v+
1 � v�1 �V = k�v1k (13)

where v+
1 and v�1 are to be determined along with the position vector, r�v1 , at which the maneuver is

applied, occurring at t1 on Orbit 0 . A 1-impulse transfer targeting an example v+
1 is shown in Figure 1.

The position vector at which the departure maneuver is made, r�v1 , must lie both in the plane of Orbit
0 and Orbit f . The construction of the IG, depends on whether Orbit 0 and Orbit f simply intersect or
fully coincide. Hence, consider two sub-cases associated with �nal to initial orbit coincidence:

1. ĥ0 � v̂+
1 = 0 (orbit planes are coincident, ĥ0jjĥf ). This is the trivial case, r�v1 is the pericenter position

vector of the departure hyperbola,
r�v1 = rp0 r̂pf

The departure hyperbola and the post maneuver velocity vector v+
1 = vpf

may then be fully de�ned
using Eqs. (5)-(12). The velocity vector before the departure maneuver is

v�1 =
r

�

rp0
v̂pf

2. ĥ0 � v̂+
1 6= 0 (orbit planes intersect). This is the most general case. The position vector direction where

the maneuver occurs is �xed and along,

r̂�v1 =
v̂+
1 � ĥf


v̂+
1 � ĥf




 (14)
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Figure 1. Sketch of 1-Impulse IG Escape (not to scale): �rel = 60�, �rel = 190�, from a Circular and Equatorial
Parking Orbit.

The true anomaly associated with r�v1 on Orbit 0 must be found. It is referred to as �10 and is the
angle between r̂p0 (the pericenter direction vector of Orbit 0) and r̂�v1 that is measured positive about
ĥ0 from r̂p0 :

�10 =
h
sign

�
ĥ0 � (r̂p0 � r̂�v1)

�i
arccos (r̂p0 � r̂�v1)

It is noted that �� � �10 � � which can then be modulated to be between 0 and 2�. The magnitude
of r�v1 is computed as

r�v1 =
a0

�
1� e2

0

�
1 + e0 cos �10

so that
r�v1 = r�v1 r̂�v1

The hyperbola that contains both r�v1 and v+
1 must be determined. It is observed that r�v1 is not

necessarily the pericenter position vector of the departure hyperbola, and that it lies at the intersection
of both orbit planes, between the pericenter vector of the hyperbola rpf

and its outgoing asymptote.

The true anomaly of r�v1 on the hyperbola, �1f , is unknown but satis�es the polar equation,

r�v1 =
af (1� ef 2)

1 + ef cos �1f
(15)
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The eccentricity of the departure hyperbola, ef , is also unknown. With �+
1 being the true anomaly

associated with v+
1 de�ned in Eq. (9), and it is known that 0 � �1f < �+

1. The angle between r̂�v1

and v̂+
1 is �

2 , from Eq. (14). With

�1f = �+
1 �

�

2
(16)

Equations (15), (16), and (9) are combined to obtain the system of nonlinear equations,8>><>>:
r�v1 =

af (1� ef 2)
1 + ef sin �+

1

cos �+
1 =

�
� 1
ef

� (17)

with unknowns ef and �+
1, which has a unique solution in the ranges 1 < ef <1 and �

2 < �+
1 < � :

ef =

p
1 + 2�2 + 2�+

p
1 + 4�p

2�
where � = � af

r�v1

(18a)

�+
1 = arccos

�
� 1
ef

�
(18b)

Then, the true anomaly on the hyperbola associated with r�v1 is computed, from Eq. (16), and with
�+
1 and ef computed, the departure hyperbola elements may be computed from Eqs. (5)-(12). The

post-maneuver velocity required at r�v1 is then simply7

v+
1 =

s
�

af

�
1� e2

f

� �(� sin �1f ) r̂pf
+ (ef + cos �1f ) v̂pf

�
and the pre-maneuver velocity on Orbit 0 is

v�1 =
r

�

a0 (1� e2
0)

[(� sin �10) r̂p0+ (e0 + cos �10) v̂p0 ]

The required maneuver is given by Eq. (13).

The time (�t1) from the initial true anomaly �0 to �10 is found by numerically solving Kepler’s equation
on the initial parking orbit. Some additional coasting is added to the time where the maneuver occurs (t1),
in order to ensure that t1 will not tend below t0 during optimization, where Tp0 is the time period of Orbit 0

t1 = �t1 + Tp0

This completes the IG construction for the 1-impulse escape.

2. 1-Impulse Optimization Problem

The 1-impulse optimization problem is therefore to determine the parameter vector Xp which minimizes
J = k�v1k , subject to equality (C) and inequality (D) constraint vectors, where

Xp =

"
�v1

t1

#
4x1

C =
�
v�1 � v+

1
�
3x1

= 0 D = [t1 � t0]1x1 � 0 (19)

And v�1 is the Keplerian forward propagated excess velocity vector. To compare the proximity of the IG
to the optimal over a variety of input parameters (escape geometries) a non-dimensional parameter vector
error Xerr

p is introduced

Xerr
p =

vuut (�v1)opt � (�v1)IG
(�v1)opt

!2

+
�

(t1)opt � (t1)IG
(t1)opt

�2

(20)
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B. Time-Free 3-Impulse Escape

To achieve v+
1 from the parking orbit, a 3-impulse transfer sequence may be used, which is particularly

bene�cial (in terms of cost savings over the 1-impulse) when the departure orbit plane is non-coincident
to the parking orbit (ĥ0 � v̂1 6= 0). When the orbit planes are coincident and rmin = rp0 , the one-impulse
maneuver will yield the same cost but with a much shorter TOF , and so it is defaulted to.4 When rmin 6= rp0 ,
the criteria for switching is generally some balance between cost savings and TOF savings. This is covered
in detail in section IV-D.

Figure 2. Sketch of 3-Impulse Time-Free IG Escape (not to scale): �rel = 60�, �rel = 190�, from a Circular and
Equatorial Parking Orbit.

1. Time-Free 3-Impulse IG Construction

The inputs to the time-free 3-impulse IG are: v+
1, rmin, rmax, the parking orbit elements, and the state

at t0. The pericenter radii of Orbits f and 2 are set equal (rpf
= rp3 = rp2)� to some ratio above rmin.

Similarly, the apocenter radius of Orbit 1 is selected as some ratio below rmax. Although the optimum rp2
�For the 3-impulse escape the subscript 3 will be used synonymously with f , since they are the same Orbit.
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and ra1 are known to occur at rmin and rmax,4 experimentally it has been determined that it is best to start
o� these limits when using a SQP method.

The impulsive maneuver vectors and the times at which they occur are determined by computing each
of the intermediate orbits, which are illustrated in Figure 2:

� �v1 is a tangential maneuver occurring at rp1 which raises the apocenter radius of the parking orbit
to that of Orbit 1.

� �v2 occurs at the intersection of the parking orbit and departure hyperbola planes (r�v2), and includes
in-plane and out-of plane components, yielding Orbit 2.

� �v3 is an in-plane maneuver which occurs at pericenter, resulting in Orbit f .

As depicted in Figure 2, the apocenter direction of Orbit 1 (r̂a1) is chosen to be along the projection of
the Orbit 2 apocenter (r̂a2) onto the parking orbit plane. This di�ers from that of,2 where r̂a1 is de�ned
along the intersection of the two planes (r̂a1 = r̂�v2), resulting in a large rotation of the apses and a poor
initial guess for small �rel. This improvement is primarily responsible for IG cost reduction and increased
proximity to the optimal, versus the heritage method, a result which is shown graphically in section IV-B.

If the parking orbit is coincident or normal to v+
1, then ĥf = ĥ�f is maintained, as in the 1-impulse

escape. For the general case (0 < jĥ0 � v̂+
1j < 1), ĥ�f is rotated to ĥf by an angle � about the speci�ed v̂+

1

vector. Recall, that ĥ�f was de�ned in order to minimize the total plane change �, which is de�ned as

� = arccos (ĥ�f � ĥ0) (21)

However, in the optimal, the combination of primary costs associated with the escape: plane change and
apses rotation are minimized. Edelbaum states5 that the apses rotation cost is of the order 1=

p
rmax , when

performed at rmax. But with r̂a1 selected as the projection of r̂a2 onto the parking orbit plane, �v2 cannot
occur at rmax. The near minimal combination of plane change and apses rotation cost, is re
ected in the
IG by choosing r̂a1 as the projection of r̂a2 and through the rotation of ĥ�f to ĥf by some angle � (a factor
proportional to 1=

p
rmax ). Therefore, � is increased from the minimum, which decreases the apses rotation

cost. Equation (22) presents a � factor which has been determined to work well experimentally.

� =
h
sign

�
ĥ0 � v̂+

1

�i� sin �
sin �+

1

�  
2p

rmax=rp0

!
(22)

Where �+
1 is the true anomaly associated with v̂+

1 on the departure hyperbola de�ned in Eq. (9). Finally,
an Euler rotation can be utilized to compute the rotated ĥf :

ĥf = (cos �) ĥ�f + (1� cos �)
�
v̂+
1 � ĥ�f

�
v̂+
1 � sin �

�
v̂+
1 � ĥ�f

�
(23)

With ĥf selected Orbit f may be fully de�ned using Eqs. (5)-(12). In order to determine the pre/post
maneuver velocities, Orbits 1 and 2 must be de�ned. The line of apses for Orbit 2 is aligned with r̂pf

so that

r̂p2 = r̂pf
r̂a2 = �r̂p2 (24)

The plane change maneuver �v2 will not necessarily occur at the apocenter of Orbit 2, since it must
occur at the intersection of the planes. In any case, the planes of Orbit 0 and Orbit 1 coincide, as do those
of Orbit 2 and Orbit f. The location of the second maneuver is called r�v2 , and it is determined based on
the three cases of �nal/initial orbit coincidence. The unit vectors r̂a1 and r̂�v2 , and the true anomaly of
r�v2 on Orbit 1 (�21) and on Orbit 2 (�22) are also computed based on these three cases:

1. jĥ0 � v̂+
1j = 0 (orbit planes are coincident)

This case is trivial, let
r̂a1 = r̂a2 = �r̂p1 r̂�v2 = r̂a1 = �r̂p1 (25)

�21 = � �22 = � (26)
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2. jĥ0 � v̂+
1j = 1 (orbit planes are orthogonal)

Here, r̂a1 = r̂�v2 and de�ned through the projection

r̂�v2 = r̂a1 = �r̂p1 =
(r̂a2 � r̂p0) r̂p0 + (r̂a2 � v̂p0) v̂p0
k(r̂a2 � r̂p0) r̂p0 + (r̂a2 � v̂p0) v̂p0k

(27)

�21 = � ��22 = arccos (r̂a2 � r̂�v2) �22 = � + ��22 (28)

3. 0 < jĥ0 � v̂+
1j < 1 (general case)

The apocenter direction for Orbit 1 r̂a1 is again de�ned through the projection

r̂a1 = �r̂p1 =
(r̂a2 � r̂p0) r̂p0 + (r̂a2 � v̂p0) v̂p0
k(r̂a2 � r̂p0) r̂p0 + (r̂a2 � v̂p0) v̂p0k

(29)

but the location of the 2nd maneuver must be located at the intersection of the two planes (r̂a1 6= r̂�v2),

r̂�v2 =
h
sign

�
ĥ0 � v̂+

1

�i �
ĥf � ĥ0

�



�ĥf � ĥ0

�


 (30)

��21 = arccos (r̂a1 � r̂�v2) �21 = � + ��21 (31)

��22 = arccos (r̂a2 � r̂�v2) �22 = � + ��22 (32)

It should be noted that both ��21 and ��22 are between 0 and �, and therefore

� � �21 � 2� � � �22 � 2�

With r̂a1 de�ned and ra1 speci�ed as some ratio of rmax, the apocenter radius vector of Orbit 1 is

ra1 = ra1 r̂a1

The pericenter vector of Orbit 1 can now be computed, which is also where the �rst maneuver �v1 is selected
to occur (transitioning from Orbit 0 to Orbit 1). The magnitude of rp1 is required to lie on Orbit 0, so let
�10 be the true anomaly associated with rp1 on Orbit 0, de�ned based on the following three cases:

1. r̂p0 � r̂p1 = 1
�10 = 0 (33)

2. r̂p0 � r̂p1 = �1
�10 = � (34)

3. ĵrp0 � r̂p1 j 6= 1

�10 =
h
sign

�
ĥ0 � (r̂p0 � r̂p1)

�i
arccos (r̂p0 � r̂p1) (35)

It is noted that �� � �10 � � so that �10 may be modulated to be between 0 and 2�. The magnitude of rp1
must then satisfy the polar equation for a conic section,

rp1 =
a0

�
1� e2

0

�
1 + e0 cos �10

so that
rp1 = r�v1 = rp1 r̂p1

The Orbit 1 semi-major axis and eccentricity are then

a1 =
ra1 + rp1

2
e1 =

ra1 � rp1
ra1 + rp1
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With Orbit 1 fully de�ned and �21 known, the radial magnitude where the 2nd maneuver occurs may be
computed from the polar equation of a conic section,

r�v2 =
a1

�
1� e2

1

�
1 + e1 cos �21

And verifying the polar equation of a conic section for r�v2 on Orbit 2 yields e2 and a2

e2 =
r�v2 � rp2

r�v2 cos ��22 + rp2
a2 =

rp2
1� e2

Recall that rp2 = rpf
, and is known as some ratio of rmin. Orbits 1 and 2 are now completely de�ned and

the velocity vectors before and after each maneuver may be computed.

Regarding the �rst maneuver, �v1, the speed at pericenter on Orbit 1 is computed from

vp1 =

s
�

�
2
rp1
� 1
a1

�
(36)

so that
v+

1 = vp1 v̂p1 v̂p1 = ĥ0 � r̂p1 (37)

and
v�1 =

r
�

a0 (1� e2
0)

[(� sin �10) r̂p0+ (e0 + cos �10) v̂p0 ] (38)

Finally
�v1 = v+

1 � v�1 (39)

For the 2nd maneuver, �v2, the velocity on Orbit 1 at r�v2 is given by

v�2 =
r

�

a1 (1� e2
1)

[(� sin �21) r̂p1 + (e1 + cos �21) v̂p1 ] (40)

And the velocity on Orbit 2 at r�v2 is given by

v+
2 =

r
�

a2 (1� e2
2)
�
(� sin �22) r̂pf

+ (e2 + cos �22) v̂pf

�
(41)

Finally
�v2 = v+

2 � v�2 (42)

Regarding the third maneuver, �v3, the speed at pericenter on Orbit 2 is computed from

vp2 =

s
�

�
2
rp2
� 1
a2

�
(43)

Let
v+

3 = vpf
and v�3 = vp2vpf

(44)

Where vpf
is given by Eq. (11), and �nally

�v3 = v+
3 � v�3 (45)

The times between maneuvers are found numerically via Kepler’s equation: �t1 from �0 to �10 on Orbit
0, �t2 from �10 to �21 on Orbit 1, and �t3 from �22 to 0 on Orbit 2. As in the 1-impulse case additional
costing is added to t1 such that,

t1 = �t1 + Tp0 t2 = �t2 + t1 t3 = �t3 + t2

This completes the 3-impulse time-free IG construction.
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2. Time-Free 3-Impulse Optimization Problem

The scalar performance index J is

J = �V = k�v1k+ k�v2k+ k�v3k (46)

The parameter vector Xp includes the maneuver vectors and the times at which they occur. Additional
inequality constraints must be introduced to ensure the pericenter and apocenter limits are not exceeded. In
general, since �v3 is an energy increasing maneuver rp3 > rp2 in the optimal and so rp2 is the only pericenter
radii constrained. The 3-impulse time-free optimization problem is stated as,

Xp =

2666666664

�v1

�v2

�v3

t1

t2

t3

3777777775
12x1

C =
�
v�1 � v+

1
�
3x1

= 0 D =

2666666664

t1 � t0
t2 � t1
t3 � t2

rp2 � rmin
rp1 � rmin
rmax � ra1

3777777775
6x1

� 0 (47)

And v�1 is the Keplerian forward propagated excess velocity vector. Once again to compare the proximity
of the IG to the optimal a non-dimensional parameter vector error is introduced as

Xerr
p =

s�
�Vopt ��VIG

k�Voptk

�2

+
�

(t1)opt � (t1)IG
(t1)opt

�2

+
�

(t2)opt � (t2)IG
(t2)opt

�2

+
�

(t3)opt � (t3)IG
(t3)opt

�2

(48)

Where,

�V =

264 �v1

�v2

�v3

375
9x1

(49)

3. Alternate Time-Free 3-Impulse Optimization Problem

The size of the optimization problem can be reduced by explicitly solving for the �v3 necessary to achieve
the speci�ed v+

1, thereby eliminating �v3 from Xp and eliminating C entirely.

t1, t2, t3, �v1, and �v2 are changing during optimization, but v�3 and r�v3 can be computed from these
parameters via forward Keplerian propagation. af remains constant during optimization as given in Eq. (5),
but the departure hyperbola eccentricity, ef , and the true anomaly of �v3 on Orbit f , �3f , will change.
However, r�v3 must satisfy the polar equation of a conic section on the departure hyperbola,

r�v3 =
af

�
1� e2

f

�
1 + ef cos �3f

(50)

The angle between r̂�v3 and v̂+
1, ��3f is de�ned as,

��3f = arccos
�
r̂�v3 � v̂+

1
�

(51)

And looking at the escape orbit plane, �3f is related to ��3f and �+
1 by

�3f = �+
1 ���3f (52)

Where �+
1 is a function of ef from Eq. (9). Since ��3f is known from Eq. (51), Eqs. (50), (52), and (9) can

be combined. Solving for ef yields Eq. (53) which has a unique solution in the range 1 < ef <1.

ef =

r
sin2 ��3f + 2�2 + 2�(1� cos ��3f ) + sin ��3f

q
sin2 ��3f + 4�(1� cos ��3f )

p
2�

(53)
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Where,
� = � af

r�v3

(54)

With ef known, �+
1 and �3f can be computed using Eqs. (9) and (52), respectively. The departure hyperbola

may then be fully de�ned using Eqs. (6)-(12). All that remains is to determine the v+
3 necessary to achieve

the speci�ed v+
1, which is given simply as

v+
3 =

s
�

af

�
1� e2

f

� �(� sin �3f ) r̂pf
+ (ef + cos �3f ) v̂pf

�
(55)

Since v�3 is known from forward Keplerian propagation, the �nal maneuver is known

�v3 = v+
3 � v�3 (56)

An alternate optimization problem may be constructed, referred to as 3-impulse time-free without �v3.
The performance index J and inequality constraint vector D are the same as given in Eqs. (46)-(47), but
there is no longer an equality constraint vector C (it is satis�ed directly) and the new Xp is given by,

Xp =

2666664
�v1

�v2

t1

t2

t3

3777775
9x1

(57)

The non-dimensional parameter vector error (Xerr
p ) is the same as that given in Eq. (48) but with �V given

by Eq. (58)

�V =

"
�v1

�v2

#
6x1

(58)

C. Time-Fixed 3-Impulse Escape

The following construction is useful in that it allows for quick cost assessments for particular escape geome-
tries as a function of the TOF . These TOF speci�c, feasible escapes, may still be optimized using parameter
optimization techniques as opposed to primer vector theory. For this analysis, the initial state on the parking
orbit is considered arbitrary (i.e. t1 = t0 and �0 = �10).

1. Time-Fixed 3-Impulse IG Construction

The inputs required for the generation of a time-�xed 3-impulse IG are: v+
1, rmin, TOF , the parking orbit

elements, and the initial epoch (t0 = t1).y When the escape time (TOF = t3 � t1) is speci�ed, the relative
energy and lines of apses for Orbits 1 and 2 are not arbitrary (as in the 3-impulse time-free IG method), but
are related and constrained by the TOF . In order to handle this and because this construction is meant to
provide rough estimates, the following strategy is adopted:

� ĥf is maintained as de�ned in Eqs. (2)-(4) based on the three cases of initial and �nal orbit coincidence.
This is similar to the 1-impulse IG, and in contrast to the rotation by the angle � as in the 3-impulse
time-free IG.

� Orbit 1 is de�ned with r̂a1 along the projection of �r̂pf
onto the parking orbit plane (this is identical

to the 3-impulse time-free, except r̂a2 is not necessarily the same as �r̂pf
), and Orbit 1 is given a time

period equal to the escape time (Tp1 = TOF ). �v1 is purely in-plane and occurs at the pericenter of
Orbit 1, such that the planes of Orbit 0 and Orbit 1 coincide.

� In the case of fully coincident orbits (jĥ0�v̂+
1j = 0), Orbits 2 and f are allowed to coincide (rp2 = rpf

and
ĥ2 = ĥf ) but with pericenter magnitude (rp2 = rpf

) such that �v3 occurs at rpf
at time t3 = TOF+t1.

yrmax is no longer an input since the TOF , and therefore the size of the intermediate orbits, is being constrained directly.
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� For non-coincident orbits, the orientation and energy of Orbit 2 are determined such that �v3 occurs
at rpf

at time t3 = TOF + t1, causing Orbits 2 and f to not coincide (rp2 6= rpf
and ĥ2 6= ĥf ).

As in the time-free case, �v2 occurs at the intersection of Orbit 0 and Orbit f resulting in Orbit 2, which
may or may not coincide with the plane of Orbit f . With the exception of the Orbit 2 orientation and the
ĥf selection, the time-�xed 3-impulse IG follows a very similar construction to the time-free case illustrated
in Figure 2. The following quantities are computed using the time-free IG Eqs. (24)-(35):

r̂p1 = r̂�v1 = �r̂a1 ; r̂�v2 ; r̂p3 = r̂pf
; �10 ; and �21

a1 is then computed such that Orbit 1 has time-period equal to the TOF

a1 =

 
�

�
TOF

2�

�2
! 1

3

Once rpf
is de�ned and Orbit f is computed, Orbit 1 can be fully de�ned along with the locations of the

1st and 2nd maneuvers, demonstrated in Eqs. (59)-(61). Also, the velocity vectors before and after the �rst
maneuver (and therefore �v1) may be computed using Eqs. (36)-(39).

rp1 = r�v1 =
a0

�
1� e2

0

�
1 + e0 cos �10

e1 = 1� rp1
a1

(59)

ra1 = a1 (1 + e1) r�v2 =
a1

�
1� e2

1

�
1 + e1 cos �21

(60)

rp1 = r�v1 = rp1 r̂p1 r�v2 = r�v2 r̂�v2 (61)

At this point all that remains is to de�ne: the ratio of rpf
to rmin, Orbit 2, and the time at which the 2nd

maneuver occurs t2. This is done on the basis of the now familiar cases of initial and �nal orbit coincidence:

1. jĥ0 � v̂+
1j = 0 (orbit planes are coincident)

As de�ned previously this case provides that r�v2 = ra1 = ra2 and all orbits are coincident. rpf
must

be determined so that the �nal maneuver occurs at rpf
at the correct time. Since the 2nd maneuver

occurs at the shared apocenter of Orbits 1 and 2, t2 is simply

t2 =
TOF

2

Recalling the assumption that rmin � rp0 , and since ra2 = ra1 , the only possible solution is if:

rpf
= rp2 = rp1 = rp0

With rpf
and ĥf known, Orbit f may be fully determined using Eqs. (5)-(12). It should be noted that,

a1 = a2 and e1 = e2 (Orbit 1 is the same as Orbit 2), and therefore the IG �v2 is zero. Orbit 1 and
the locations of maneuvers 1 and 2 are then determined as outlined above, in Eqs. (59)-(61). The 1st
and 3rd maneuvers are computed using Eqs. (36)-(39) and Eqs. (43)-(45), respectively.

2. jĥ0 � v̂+
1j 6= 0

In this general case, a solution to Lambert’s problem is found in order to determine the necessary arc
(speci�cally v+

2 and v�3 ) transversing r�v2 to rpf
in the time t3 � t2. This yields Orbit 2 as well as

places the �nal maneuver at rpf
; however, Orbits 2 and f will not be coplanar. First, the pericenter

radius of the departure hyperbola rpf
is de�ned as some ratio of rmin (as in the time-free IG) and

Orbit f is determined using Eqs. (5)-(12). Next, t2 is found by solving Kepler’s equation along Orbit
1 from rp1 to r�v2 , since �21 is known. Also, since �21 � � it is known that

t2 �
TOF

2
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With v+
2 and r�v2 known, the Orbit 2 elements (a2 and e2) may be computed as follows where �2 and

h2 are the energy and angular momentum magnitude of Orbit 2, respectively

�2 =
kv+

2 k2

2
� �

r�v2

h2 = kr�v2 � v+
2 k

a2 =
��
2�2

e2 =

s
1 +

2�2h2
2

�2

The only remaining unknown velocities are v�2 and v+
3 , but v�2 may be computed using Eq. (40), and

v+
3 is the pericenter velocity on Orbit f derived in Eqs. (5)-(12). All maneuver vectors and the times

at which they occur are now de�ned, and therefore the time-�xed 3-impulse IG is complete.

2. Time-Fixed 3-Impulse Optimization Problem

J and C are identical to the time-free optimization problem de�ned in Eq. (46) and Eq. (47), but Xp and
D are di�erent and given by

Xp =

2666664
�v1

�v2

�v3

t2

�10

3777775
11x1

D =

26664
t2 � t1
t3 � t2

rp2 � rmin
rp1 � rmin

37775
4x1

� 0 (62)

The number of parameters is reduced by 1, whereas the number of inequality constraints is reduced by 2,
compared with the time-free problem. The extra inequality constraint lost is due to allowing t1 = t0, and
therefore ignoring any coasting from �0 to �10. The non-dimensional parameter vector error for the time-�xed
problem is given by Eq. (63).

Xerr
p =

s�
�Vopt ��VIG

k�Voptk

�2

+
�

(t2)opt � (t2)IG
(t2)opt

�2

+
�

(�10)opt � (�10)IG
(�10)opt

�2

(63)

Where, �V is as given in Eq. (49).

IV. Results

The readily available SQP based VF13ad algorithm was used in solving each optimization problem, with
convergence de�ned by the inequality Eqs. (64)-(65), where � is a user supplied convergence tolerance.z���� @J@Xp

�Xp

���� < � (64)

And
Ci < � for i = 1 : total number of equality constraints (65)

The �gures that follow (unless otherwise noted) were generated using � = 10�8, and with input parameter
ranges derived from typical trans-Earth injection (TEI) targets from the Moon (� = �Moon).6 The non-
dimensional (except rp0) input parameter ranges and step-sizes used are provided in Table 1. The parameters
are presented in the order in which they are looped during the scan, with v+

1=vp0 being the outermost loop
and �rel being the innermost. Of course, for the 1-impulse escape, both rmax and rmin are ignorable.
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Input Parameter Min. Value Max. Value Step Size
v+
1=vp0 0.5404 0.8106 0.1351
rmin=rp0 0.8213 0.9553 0.0670
rmax=rp0 7.8786 13.2402 1.3401
�rel -90� 90� 5�

rp0 2238.1 km 2238.1 km 0

Table 1. Summary of TEI Derived Input Parameter Scan Used to Generate Results

Figure 3. 1-Impulse IG and Optimal Characteristic Costs and Parameter Vector Errors vs. �rel over the Range
Provided in Table 1.

A. Single-Impulse Escape Results

Over the range of inputs speci�ed in Table 1, Figure 3 shows the IG vs. optimal characteristic �V , and the
parameter vector error (Xerr

p ) as de�ned in Eq. (20).x

The greatest error between IG and optimal is exhibited at low �rel, and the IG becomes practically
indistinguishable from the optimal at high �rel until becoming virtually zero at �rel = 90�. Also, the IG
most closely re
ects the optimal at high characteristic escape velocities, with greater error when v+

1=vp0 is
small. As expected, the total cost increases with increasing v+

1=vp0 and rapidly with increasing �rel.

B. Time-Free 3-Impulse Escape Results

Although, only local optima can be assured, con�dence that these optima are in fact global can be achieved
by providing lower quality initial guesses and ensuring that the same optimal solutions are converged upon.
Identical optimal solutions were reached experimentally when the ratios of rp2 = rp3 = rpf

and ra1 to the
limits rmin and rmax, were varied from 0.9 to 0.5 and 1.1 to 1.5, respectively. In the following results
ra1 = 0:9 (rmax) and rp3 = 1:1 (rmin) were used, since they are near enough to the optimal but substantially
o� the boundary so as to not hinder the numerical method, as determined experimentally.
zFor practical reasons the parameter vector, the constraints, and the cost are scaled to be near unity and much e�ort must

be devoted to tuning these scaling factors and perturbation step sizes when optimizing, the details of which are omitted.
xThe range of �rel shown in Figure 3 is limited because the curves converge at high j�relj
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Figure 4. Total Characteristic Cost Comparison of Heritage IG, Improved IG, and Optimal vs. �rel over the
Range Provided in Table 1.

The reduction in total characteristic �V and greater proximity to the optimal, over the range given
in Table 1, compared with the heritage method,2 is shown in Figures 4 and 5. The improved IG method
therefore provides solutions much closer to the optimal as evidenced by a lower �V=vp0 and lower Xerr

p as
de�ned in Eq. (48). At �rel = 0� the heritage and improved IG are identical and very close to the optimal,
but as j�relj is increased incrementally from zero a large jump in the heritage method �V results. This
caused problems with convergence, which the new IG does not exhibit because of its closer proximity to the
optimal. The considerable reduction in Xerr

p as illustrated in Figure 5, particularly at low �rel was the major
achievement of the new IG construction.

Figure 5. Improved Proximity of 3-Impulse Time-free IG to Optimal Through Reduction of Parameter Vector
Error (Xerr

p ) vs. �rel over the Range Provided in Table 1.
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Figures 6-7 demonstrate (for particular cases) that ra1 tends to rmax and that rp2 tends to rmin in the
optimal solutions. Figure 7 also shows that rp3 = rpf

is at or above the rmin boundary and therefore does
not violate the constraint. At low �rel , rp3 = rp2 = rmin , but as the magnitude of �rel increases rp3 grows
larger and diverges from the rmin boundary, a fact indicative of possible cost savings through the addition
of a fourth impulse, which will be discussed in section IV-D.

Figure 6. Optimal 3-Impulse Orbit 1 Apocenter Radii for rmin=rp0 = 0.8213 and v+1=vp0 = 0.8106 vs. �rel over
the Range Provided in Table 1.

Figure 7. Optimal 3-Impulse Orbit 2/3 Pericenter Radii for v+1=vp0 = 0.8106 and all rmax=rp0 vs. �rel over the
Range Provided in Table 1.

C. Time-Fixed 3-Impulse Escape Results

So that the following time-�xed results may be compared to those of the time-free 3-impulse escapes, the
Table 1 scan was repeated with the TOF computed as a function of rmax and rmin such that,

TOF = 2�

s�
rmin + rmax

2

�3 1
�

(66)
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Figure 8. 3-Impulse Time-free and Time-�xed IG Characteristic Cost Comparison vs. �rel over the Range
Provided in Table 1.

Figure 9. 3-Impulse Time-free and Time-�xed Optimal Characteristic Cost Comparison vs. �rel over the
Range Provided in Table 1.

It is expected that the �V plots for the time-free and �xed IG methods should exhibit similar behavior, a
fact con�rmed in Figure 8. Furthermore, the optimal solutions associated with these initial guesses should be
nearly identical, as demonstrated in Figure 9. The Xerr

p for the two constructions, will however, be di�erent
since the parameter vectors are not the same and the IG constructions do di�er. Figure 10 compares the
two method’s parameter vector errors, time-free Xerr

p de�ned in Eq. (48) vs. time-�xed Xerr
p as de�ned

in Eq. (63). The larger error exhibited by the time-�xed method is due in part to maintaining ĥf = ĥ�f ,
resulting in a greater number of iterations to converge, discussed in section D. Figure 11 shows the total
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Figure 10. 3-Impulse Time-free and Time-�xed Xerr
p Comparison vs. �rel over the Range Provided in Table 1.

Figure 11. 3-Impulse Time-�xed IG and Optimal Characteristic Cost Comparison vs. TOF for �rel = 20�,
rmin=rp0 = 0.8213 and all v+1=vp0 over the Range Provided in Table 1.

characteristic cost versus the characteristic TOF and v+
1=vp0 , for a particular case of rmin=rp0 and �rel.

The cost decreases with increasing TOF and decreasing v+
1=vp0 , as expected. For this particular case, the

behavior of the optimal solutions are mimicked by the IG, but at a slightly higher �V .

D. How Many Impulses?

Although 1 and 3-impulse problems are constructed and can be converged to the optimum, the question of
how many impulses to use for a given escape geometry remains. Jezewski and Rozendaal (among others)
have considered this question from the perspective of primer vector theory, when the TOF is speci�ed.8

In the context of the time-free parameter optimization problem; however, very little has been published to
answer this question. This section presents some simple qualitative switching criteria, which may be utilized
to aid in the escape design. The �rst criteria, will be that of when to switch from 1 to 3-impulses. The
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3-impulse escape yields much lower costs than the 1-impulse at high �rel, and so the most di�cult region for
determining switching is at low �rel. To illustrate this, another input parameter scan is utilized as de�ned
in Table 2, with �rel now being the outermost loop and v+

1=vp0 the innermost.

Input Parameter Min. Value Max. Value Step Size
�rel 0� 10� 1�

rmin=rp0 0.3 1 0.4
rmax=rp0 5 10 2.5
v+
1=vp0 0.2344 1.6409 0.1172
rp0 6738.1 km 6738.1 km 0

Table 2. Input Parameter Scan Used to Generate 1/3 Impulse Switching Criteria Plots

Figure 12. 1/3 Impulse Switching Criteria: Characteristic Cost vs. Characteristic Escape Speed at �rel = 0�

over the Range Provided in Table 2.

Figure 13. 1/3 Impulse Switching Criteria: Characteristic Cost vs. Characteristic Escape Speed at �rel = 5�

over the Range Provided in Table 2.
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As stated previously, and cited for example in4 and,1 when the orbit planes are coincident and rmin = rp0 ,
the 1-impulse escape will yield the same cost but with a much shorter TOF . When rmin 6= rp0 , the criteria
for switching is a function of v+

1=vp0 and the pericenter/apocenter limits rmin and rmax, a fact noted in.4

Figures 12-14 compare the optimum characteristic costs of the 1 and 3-impulse escapes for the range of
inputs given in Table 2, and �rel = 0�, 5�, and 10�.

Figure 14. 1/3 Impulse Switching Criteria: Characteristic Cost vs. Characteristic Escape Speed at �rel = 10�

over the Range Provided in Table 2.

Based on these results, the 3-impulse escape will be of lower cost if v+
1=vp0 � 0:8 and rmin < rp0 . Recall,

however, that this may not hold in the presence of gravitational perturbations or in constructing a complete
trajectory. In fact, it has been shown in,2 that a 1-impulse escape can be cheaper than a 3-impulse for �rel
as high as 12�, when the e�ect of the Earth is included.

Figure 15. 1/3 Impulse Switching Criteria at �rel = 0� over the Range Provided in Table 2: a) Characteristic
Cost Savings and b) Characteristic TOF Increase ((t3 � t1)=Tp0).

Another consideration to be made, is that at low �rel the savings in �V may be small compared with
the increased TOF when switching from a 1 to a 3-impulse escape. Figures 15-17 present data which would
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Figure 16. 1/3 Impulse Switching Criteria at �rel = 5� over the Range Provided in Table 2: a) Characteristic
Cost Savings and b) Characteristic TOF Increase ((t3 � t1)=Tp0).

Figure 17. 1/3 Impulse Switching Criteria at �rel = 10� over the Range Provided in Table 2: a) Characteristic
Cost Savings and b) Characteristic TOF Increase ((t3 � t1)=Tp0).

be useful in making this trade as applied to a real mission, for the same �rel values as before. The plots
therefore indicate the non-dimensional cost savings versus the added non-dimensional TOF when using a
3-impulse escape over a 1-impulse escape.{ For example, in Figure 16 at v+

1=vp0 = 1:0 and rmin=rp0 = 0:7
the characteristic cost savings are just above 0.05 but the characteristic TOF increase can be anywhere from
5 to 13, depending on the choice of rmax.

As �rel gets exceedingly large a 4th impulse may provide a lower cost escape than the 3-impulse. For
circular parking orbits and rmin � rp0 , Edelbaum5 provides a simple measure for whether a 3 or 4-impulse

escape should be used based on the minimum plane change angle �, given in Eq. (21), and the true

{The 1-impulse TOF is considered to be zero and therefore the increased TOF is simply the 3-impulse TOF = t3� t1 made
non-dimensional through division by the parking orbit period Tp0
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anomaly associated with v+
1 on the departure hyperbola �+

1, given in Eq. (9). This criteria is derived using
asymptotic expansions of the total cost when the TOF is known. As alluded to before, those cases where a
4th impulse should be added, correspond to the same cases where rp3 is diverging from rmin in Figure 7.

If, � < � � �+
1 Then a 3-impulse escape is indeed optimal.

Otherwise adding a 4th impulse may reduce the cost. Based on this criteria, the optimal 3-impulse
characteristic costs from Figure 4 are repeated in Figure 18, but those escapes where the 3-impulse are
indeed optimum (left plot) are di�erentiated from those where a 4th impulse should be added (right plot).
It should be noted that these savings must still be veri�ed and quanti�ed.

Figure 18. 3/4 Impulse Switching Criteria: Optimal 3-Impulse Characteristic Cost vs. �rel over the Range
Provided in Table 1.

Table 3 compares all of the impulsive escape methods and their convergence to the optimal solutions
over the input parameter ranges given in Table 1. These comparisons are as valid as possible, in that the
tuning, scaling, and method for converging each optimization problem was kept as similar as possible. From

Impulsive Escape Type Avg. Opt. Avg. Opt. Avg. Avg. Num. of
�V=vp0 TOF=Tp0 Xerr

p Iterations
Single-Impulse 1.2075 n/a 0.2450 13
3-Impulse Time-free with 0.6914 13.6104 0.3364 3393
�v3 in Xp

3-Impulse Time-free without 0.6914 13.6104 0.3237 3180
�v3 in Xp

3-Impulse Time-�xed 0.6897 13.8354 0.5720 10900

Table 3. Summary of Averaged Optimal Impulsive Escapes and Convergence for all Methods over the Range
Provided in Table 1.

Table 3, it is noted that over the entire range of scanned parameters the 3-impulse escape has a much lower
average characteristic cost �V=vp0 , but that this comes at the expense of added 
ight time (TOF ), and a
two orders of magnitude increase in the average number of iterations required to converge upon the optimal.
When �v3 is explicitly removed from the 3-impulse time-free Xp the number of iterations required decreases
some, but not substantially. The 3-impulse time-�xed construction exhibits the greatest average Xerr

p and
therefore requires many more iterations to converge to the optimal. This is due in part to a relatively poor
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selection of ĥf and the intermediate Orbits’ line of apses in the IG, which were necessary to satisfy the
TOF explicitly. The optimal solutions may still be converged upon, however this construction may best be
utilized to provide quick initial cost estimates as a function of TOF .

V. Conclusions

Methods for determining optimal impulsive transfers from a circular parking orbit about an arbitrary
celestial body to some excess velocity vector v+

1 have been presented. Non-dimensional parameters have
been used throughout this work, so that the results and methods may be applied to escapes from any
celestial body and to all relative declination, right ascension, and v+

1 magnitude targets. Constrained
parameter optimization problems are constructed and solved, but generally require a quality initial guess
(IG), resulting in the introduction of the non-dimensional parameter vector error (Xerr

p ) in order to assess
IG proximity to the optimal. The 3-impulse IG method has been dramatically improved from that of,2 and
now more closely re
ects the behavior of the optimal resulting in better overall convergence.

The 3-impulse time-�xed IG and optimization method developed in this work will allow for quick cost
assessments for a variety of escape geometries as a function of the time-of-
ight (TOF ). In addition, the
qualitative criteria developed will enable the determination of whether a 3-impulse escape should be used over
a 1-impulse escape, which generally involves trading �V reduction with TOF increase. The feasible/optimal
impulsive escapes developed may be used as quality initial guesses for larger problems involving: continuous
transfers between celestial bodies in an N-body gravitational �eld, conversion to optimal �nite-burn escapes,
and combinations of the two.

The methods and results presented in this paper are currently being used to investigate further improve-
ments to the IG constructions as e0 increases from zero and �rel becomes increasingly important. The
switching criteria between 1 and 3-impulse escapes will also have to be updated when considering parking
orbits with e0 6= 0. Following the methodology of the 1 and 3-impulse time-free escapes, a 4-impulse IG and
optimization construction is being investigated in order to validate the claims made in5 that additional sav-
ings can be obtained (from that of the 3-impulse) for certain escape geometries. Furthermore, the switching
criteria from 3-impulses to 4 may also involve increased TOF , and any �V savings may vary dramatically
for e0 6= 0, all of which must be investigated.
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