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OPTIMAL RECONFIGURATIONS OF COULOMB FORMATIONS
ALONG INVARIANT MANIFOLDS

D.R. Jones*

Coulomb formations refer to swarms of closely-flying spacecraft, in which the net
electric charge of each vehicle is controlled. Active charge control is central to
this concept and enables a propulsion system with highly desirable characteris-
tics, albeit with limited controllability. Numerous Coulomb equilibria have been
derived (for various force models), but to maintain and maneuver these configu-
rations, some inertial thrust is required to supplement the nearly propellant-less
charge control. In this work, invariant manifold theory is applied to dynamically
unstable Coulomb configurations, as part of a generalized procedure to formulate
and parameterize optimal transfers from one Coulomb configuration to another.
The emphasis is on minimizing the inertial thrust necessary to complete such re-
configurations, in part, by exploiting uncontrolled motion along the manifolds.
The possible permutations and variations for modeling the optimal transfers, that
are within the scope of the general methodology, are discussed. Numerical re-
sults are then provided, as demonstrative examples of the optimization procedure,
using a two-craft Coulomb formation model with linearized two-body gravity and
simple control parameterizations. Particle Swarm Optimization, a novel stochastic
method, is used to solve the optimal transfer problems and its adeptness at doing
s0, as well as its additional utility in Coulomb formation research, is addressed.

INTRODUCTION

Close-proximity formations of cooperative spacecraft (s/c) are being considered for a variety of
applications, and have many advantages over a single large craft, including: overall mass reduc-
tion, the ability to be deployed and assembled on multiple launches, and a unique ability to perform
scientific tasks such as interferometry. The NASA Terrestrial Planet Finder Mission (TPF) is one ex-
ample in which this concept is being proposed.! Existing electric propulsion (EP) systems have been
considered to control relative formation motions; however, EP suffers from limited throttle-ability
and introduces the problem of thruster-plume impingement. The latter problem involves EP thruster
ejecta damaging neighboring craft and is especially detrimental at small separation distances (order
of meters).> Coulomb thrusting was recently introduced by King et. al.>~3 as an alternative to
EP, where the electric potential (or net charge) of each s/c is actively controlled, to provide inter-
craft forces. It was demonstrated that such a propulsion system could provide the static equilibrium
forces (on the order of uN-mN), necessary to sustain various 3-5 craft ‘virtual structures’, and with
less power and fuel than competing EP systems.? In fact, the Coulomb configurations simulated in
this work had power requirements on the order of 0.1 W and fuel usage on the order of 10 grams, for
10-year operations. Furthermore, this nearly-propellant-less system (ISP as high as 103 sec) averts
thruster-plume impingement, and has extremely fast throttling (max charge transition on the order
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of msec).? Also, this concept is made possible using existing technology, since active control of s/c
charge was successfully executed during the SCATHA® and ATS® missions, and currently on the
CLUSTER” mission. Other potential applications for active charge control have been suggested in-
cluding: advanced docking/rendezvous, autonomous inspection, contact-less removal of hazardous
material, and the deployment/retrieval of instruments.*

Unfortunately, this type of propulsion system does have a couple of drawbacks. First, the sys-
tem’s ability to generate useful force magnitudes may be infeasible in some environmental regimes
(due to the local plasma screening the electric potential’s ‘sphere-of-influence’ down to impracti-
cal distances). This is primarily troublesome at LEO, but much less so at GEO and interplanetary
distances. The second drawback is that Coulomb thrusting alone provides limited controllability,
and cannot alter the overall formation angular momentum.® This has led to the adoption of hybrid
propulsion systems, where charge control is supplemented with inertial thrust (EP or chemical) to
enable full controllability.’~ ' Many constant-charge equilibrium configurations have been derived
(analytically for formations with less than 5 s/c, and numerically otherwise), and thus far, all are
dynamically unstable.”~* Other known Coulomb equilibria include: 3-s/c formations in the absence
of gravitational forces,!! and 2-s/c formations using fully non-linear equations in the restricted 2-
body and 3-body (CRTBP) problems.!? Moreover, these highly nonlinear and coupled dynamical
systems permit the potential existence of numerous, yet undiscovered, equilibria and periodicity
conditions (constant and/or variable charge).

This research will discuss how invariant manifolds associated with nominal Coulomb formations
(static or periodic) may be used in the derivation of station-keeping and maneuvering methods. A
novel and generalized procedure for targeting optimal transfers from one Coulomb configuration
to another is outlined in detail. In this methodology, a nonlinear program is formulated and the
system’s uncontrolled flow, along manifolds, is exploited to yield a partial transfer. This then is
differentially corrected using parameterized controls to form the continuous trajectory. Generally
some measure of fuel or power consumption (but not time) is minimized, since motion along mani-
folds implies long duration transfers. Furthermore, a new and unique stochastic method, known as
Particle Swarm Optimization (PSO), is proposed for solving the optimal reconfigurations, and the
advantages of doing so are discussed.'>~ 13
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Figure 1. Rotating Hill Coordinate Frame with Relative Position Vector r;



For Coulomb formations near GEO, a common assumption is to describe s/c motions relative to a
nominal center-of-mass (CM) orbit (assumed circular with semi-major-axis ag near GEO), using the
linearized Clohessy-Wiltshire-Hill (CW) equations of motion.!* The rotating Hill frame, with origin
at CM and axes labeled: z for radial, y for transverse, and z for normal, is depicted in Figure 1.
This model admits three equilibrium configurations, such that both craft appear statically fixed with
respect to the Hill frame. Inampudi applied a pseudo-spectral discretization method for targeting
optimal transfers between these equilibrium configurations, for minimum: time, fuel, and total
power usage.'” This research also pursues optimal transfers (reconfigurations) between the same
equilibria; however, the problem setup differs substantially, with added emphasis on generality.
The current work also contrasts with that of,!” by its utilization of invariant manifold theory and
employment of a stochastic rather than a deterministic optimization method.

In terms of Coulomb formation stabilization, thus far only continuous feedback controllers have
been considered. Such controllers have been derived and tested (in the presence of gravity gradient
torque and other disturbances) by Natarajan and Schaub for the 2-s/c Hill frame equilibria,’:'> and
by Inampudi for CRTBP equilibrium configurations about Earth-Moon libration points.'® Contin-
uous thrusting, however, may not be feasible for all missions. Discrete formation-keeping would
be necessary in these cases, and invariant manifold theory enables a class of such methods, which
might also yield less overall impulsive cost (A1) than continuous approaches. An example method,
is the Floquet controller, described in detail by Marchand, in which impulsive maneuvers are applied
at discrete intervals in order to eliminate perturbations along unstable manifold modes (allowing the
stable modes to return the formation to nominal).'® In contrast to previously developed methods,
this approach cannot ensure asymptotic stability, and depending on the frequency of the maneuvers
large tracking errors could result. Discrete stabilization methodologies, as substitutes or supple-
ments to feedback controllers, are not considered in this work; however, the application of invariant
manifold theory to Coulomb formations would be useful in their derivation.

COULOMB FORMATION BACKGROUND AND MODELING

Conductive s/c surfaces naturally exchange ions and electrons with the surrounding plasma, and
as a result assume a non-zero overall charge ¢q. This net charge generates an electric potential ¢
(measured in Volts and proportional to ¢), that reaches equilibrium when the net currents in/out are
equal to zero (as high as kV magnitude ¢ have developed on operational s/c).> In a vacuum, ¢(r)
of a charged sphere will decay in proportion to k./r, where k. is the Coulomb constant and r is the
distance from the surface center. But in a plasma, the extent of this ideal ¢(r) is effectively limited
(or shielded) due to interactions with free particles and photons. The Debeye length )\, is often used
to parameterize this shielding, such that a charged particle outside a sphere of radius Ay will not
be effected by a ¢(r) centered at » = 0. The Debeye length is a measure of the time-dependent
local plasma temperature and density, and experimental values for it have been acquired in various
regimes (e.g. LEO: 0.02 — 0.4 m, GEO: 140 — 1500 m, Interplanetary: 7.4 — 24 m).

Numerous authors have presented high fidelity computations of ¢ for realistic s/c, using finite
element analysis techniques and/or experimental data, and the true ¢ is modeled by the Vlaslov-
Poisson partial differential equations.?:'7>!8 In particular, Stiles, Seubert, and Schaub showed that
the potential is bounded above by the vacuum model and below by the conservative Debeye-Hiickel
model (a truncated version of the Vlaslov-Poisson equations).!” For the current research, each s/c
is modeled as a sphere with radius R, with an outer conducting surface of uniform charge density,
and it is assumed that R, < Ay (generally valid at GEO). By also assuming that s/c separation



distances r;; are greater than 10R,., each s/c ¢ may be modeled in simple proportion to its net

charge q as given by Eq. (1).
q
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More complex analytic expressions have been derived for scenarios in which these assumptions
are invalid, and could always be adopted in such cases.!” Nevertheless, these assumed conditions
are enforced throughout this work, allowing each s/c to be modeled accurately as equivalent point
charges, using a simplified version of the Debeye-Hiickel model, given by Eq. (2). This provides a
simple analytical expression for the potential of a s/c j with overall charge ¢; at a distance r, with
partial shielding.
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It should be noted that in practice ¢ is the control, since it is readily measured; however, with these
assumptions the net charge ¢ may be considered as a control.

Active Charge Control Background

Altering s/c ¢ artificially, simply involves utilizing an electron-gun or similar device to emit
electrons/ions into the surrounding plasma, and this process has substantial mission heritage.> =’ To
achieve and maintain an arbitrary ¢, the ejected particles must depart with sufficient kinetic energy
to escape the generated ‘potential-well’, and do so at a rate greater than the incoming environmental
current I.,, (since this will tend to drive ¢ back towards natural equilibrium). Therefore, the device
must have sufficient power P to supply a voltage equal to the desired ¢, at a current I,,; at least
greater than I.,,. Therefore combining Ohm’s law with Eq. (1) yields Eq. (3), an expression for the
device power P and the time required At, to change the net charge by an amount |Aq].

_ |Aq| _ Rsc|Ag|
Iout kc Iout

P=¢lu Al 3)

General Coulomb Formation Force Model

The force exerted on another s/c ¢ with net charge g;, due to ¢;, is then simply g; times the gradient
of ¢;, given by Eq. (2), with respect to the vector r;. Eqs. (4a)-(4b) are used in this work to model
the total acceleration of s/c ¢, with the H; term denoting Coulomb accelerations resulting from all

other charged craft. The distance between s/c i and s/c j is denoted r;; = ||r; — rj||, Gi accounts
for natural acceleration terms (e.g. gravity), and u; denotes any controllable inertial acceleration.
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Furthermore, any Coulomb formation of arbitrary number of s/c may be described by a 1st order
ODE system, denoted X = F(X, X,, t), where t is the independent variable of integration (as-
sumed time). The state vector X, of dimension NV, includes the position and velocity vectors for
each s/c rj and vj, and possibly each s/c mass m; (if variable). The elements of X, may be constant
or t dependent, and will include the control functions for each s/c: inertial thrust u;(¢) and Coulomb
thrust (defined using ¢;(t) — ¢;(¢)). Small state perturbations 60X about some reference solution



X*, may be considered as defined by Eq. (5), where X* may be: an equilibrium configuration, a
periodic motion, or simply a nominal trajectory.
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5X = (8X>
This yields a linearized ODE system for the perturbation vector X, where A is the Jacobian matrix
that can be transformed to Jordan canonical form: A = S[A]S™!. Where, [A] is a block-diagonal
matrix whose entries are the eigenvalues of A, and S has columns corresponding to the normalized
eigenvectors of A. The columns or modes of S, allow the Jacobian matrix to be decomposed into
unstable, stable, and center eigenspaces (£, £°, E° with dimensions NV,,, Ng, and N, respectively)
such that N = N,, + Ny + N,. In this linearized system, perturbations with components along the

E* basis vectors will tend to grow, those in E° will tend to dissipate, and those in E° will neither
increase or decrease.

0X = A 6X 5)
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Two-Craft Coulomb Formation Model

The following 2-s/c Coulomb formation model, using the linearized CW equations of motion,'*
is used to numerically demonstrate the proposed optimization methodology of this research. The
gravitational acceleration of s/c 1, with respect to the formation CM (G+), is defined by Eq. (6a),
and the Eq. (6b) condition is imparted from assuming the Hill frame origin to be at the CM.

2wy + 3wz
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Where, w is the nominal CM orbit rate (or Hill frame rotational rate with respect to an inertial
frame), and L = ry is the separation distance of the two craft. It is clear from Eq. (6b) that r1 and
ro are dependent, and in fact may be related via L using some some mass fractions, as follows:
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A further assumption (as done in'®>'!1) is made that: L/\; << 1, such that the (1 + 712/\g ) term
in Eq. (4a) may be ignored. This assumption has been shown to be very accurate at GEO, so long
as L is less than 50 or ever 100 meters.> ! Therefore, only separation distances L on the order of
tens of meters are considered. Eq. (7a) is then the result of this assumption, and the substitution of
Eq. (6b) into Eq. (4a) to eliminate the s/c 2 state from ¥ .
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This expression describes the uncontrolled s/c 1 acceleration as a function of its own state-vector
X (defined in Eq. (7b)), and a charge product term (). Where, () = ¢1¢» and it is assumed that
|g1| = |q2|. Furthermore, Eq. (7a) completely governs the system, since the motion of s/c 2 may be
explicitly computed from s/c 1 using Eq. (6b).

Two-Craft Coulomb Formation Equilibrium Configurations and Stability

Egs. (6b)-(7a) admit three known static equilibrium configurations which are depicted in Fig-
ures 2(a)-2(b) and Figure 3, and are denoted: Radial, Orbit-Normal, and Along-Track. A thorough
derivation of the conditions for equilibrium, as summarized in Table 1, can be found in* The
required () to achieve equilibrium is denoted @y, and is dependent on 11, mg, and the initial
separation distance Lg. It is important to note that an attractive force is necessary for the Radial
configuration, whereas the Orbit-Normal configuration requires a repulsive force.
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Figure 2. Two-S/C Coulomb Formation Equilibrium Configurations in the Hill Frame

Table 1. Two-Craft Coulomb Formation Equilibrium Condition Summary

Configuration S/C 1 Pos. Vector, ry Charge Product Q.. ¢ (Cz)

w? mymg L3 e(E0/2a)
ke (m1+m2)

Radial 1 =y1=0,21 = MnLo

—3w? mimso Lg e(Lo/ra)
ke (m1+ma2)

Along-Track 21 =21 =0,y1 = Mr1Lo 0

Orbit-Normal | y1 = 21 =0, 21 = M,1Lo

A 1st order ODE system (for either s/c) may then be linearized about each equilibria to arrive
at a Jacobian matrix A (and corresponding Jordan form). The linearized stability properties for
each may be entirely determined from the eigenvalues of A; however, an alternative stability anal-
ysis was previously performed by Natarajan and Schaub.”:!> Nevertheless, some important stability
properties are summarized as follows:
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Figure 3. Two-S/C Coulomb Formation Along-Track Equilibrium Configuration in the Hill Frame

1. All three equilibrium configurations are dynamically unstable.

2. The eigenvalues are functions of: m;j, meo, and w. However, the stability properties of all
configurations remain constant (i.e. there are no bifurcations or changes in N,,, N, and N,).

3. Radial: All eigenvalues are distinct. This configuration has one unstable and one stable
eigenvalue and both are real (V,, = N, = 1). The stable/unstable eigenvectors are contained
in the x-y plane. The dimension of the center eigenspace is N. = 4, with one oscillatory
mode in the x-y plane and the other along the z-axis.

4. Orbit-Normal: All eigenvalues are distinct. This configuration has an unstable and a stable
complex conjugate pair (IV,, = Ng = 2), resulting in oscillatory modes with components in
X, y, and z directions. The center subspace has dimension N, = 2 and is along the z-axis.

5. Along-Track: All eigenvalues associated with this configuration have zero real part (N, =
6), but there is a zero modulus repeated eigenvalue with algebraic multiplicity less than ge-
ometric multiplicity. The Jordan form then requires a generalized eigenvector, and the mode
associated with this vector produces unbounded motion.

INVARIANT MANIFOLD THEORY APPLIED TO COULOMB FORMATIONS

The global stable and unstable manifolds (if they exist) are subspaces containing all trajectories
(or flows) governed by the original nonlinear system dynamics (F'), with the following properties:

1. Unstable manifold (WW*): set of all trajectories which depart X* asymptotically as ¢t — oo.
2. Stable manifold (W?*): set of all trajectories which approach X* asymptotically as ¢t — —oc.

3. The manifolds are invariant, and therefore a state contained within W* or WW* remains in that
subspace for all time (e.g. the flow cannot naturally evolve from W* to W?).

4. The manifolds are tangent to their respective eigenspaces, in both 4 directions at each discrete
point on X*(f3;) (there is no 3; for equilibrium points), and the £ yields two branches of
W™ and W* at each X*(f3;) point. Also, the manifold subspaces are 1-D higher than their
corresponding eigenspaces (i.e. W* has dimension of N,, + 1).



The general procedure for creating the manifolds is to perturb the state by a small amount =,
along the normalized eigenvectors which span either £* or E¥ (where applicable, X* is discretized
into j = 1...M,,q. nodes, and the eigenvectors are determined at each node). For constructing
W*, the perturbed state X = X*(/3;) £+ € E“(f;) is propagated forward in time using F, from
t =0 — t¥,.. Analogously for W?, the perturbed state X = X*(3;) + € E*(f3;) is propagated
backward in time from ¢ = ¢;,,.. — 0. Particular unstable and stable manifold states, denoted
XU (¥, B;) € W* and X3(tf, B;) € W*¥, may be identified using only two time-like parameters: 3;
and t;‘/ ®. Where the former denotes discrete points of departure/arrival on X* (where applicable),

and the latter denotes the time propagation along that manifold branch.

Invariant manifold theory has successfully been used to design low-thrust transfers between re-
gions of space, in multi-body gravity fields, for example in the work of Russell and Lam.'® Because
the manifolds illustrate non-intuitive trajectories, and dynamical motions which are otherwise dif-
ficult to visualize, analogous benefits might result from their application to Coulomb formations.
The use of manifolds in this paper is restricted to designing trajectories which ‘hop’ from unstable
to stable branches in order to partially achieve formation reconfigurations, hopefully with low cost.
However, it should be noted that the theory has utility in other areas. For example, the local man-
ifolds describe how flows depart or approach some nominal configuration, and therefore would be
instrumental in designing a discrete controller to eliminate perturbations along unstable manifolds,
while intensifying those along stable manifolds.

GENERALIZED METHODOLOGY FOR TARGETING OPTIMAL COULOMB RECON-
FIGURATIONS ALONG MANIFOLDS

The primary objective in this research, is to develop a method to maneuver from some charged s/c
configuration to another, with minimal: power, total AV, or fuel use. To do this, uncontrolled flows
along manifolds, that complete as much of the transfer as possible, are sought and provide a discon-
tinuous initial guess (IG) trajectory. An optimization problem is then formulated for determining
control histories, which enforce continuity of the transfer, while minimizing some scalar objective
function J. This problem is solved directly by dividing the IG into 2M controlled segments (M
segments for the unstable manifold portion, and similarly for the stable portion), while reserving
some initial duration (along each branch) to remain uncontrolled. Next, ¢;(¢) or ¢;(¢) and u;(t) are
approximated (for each ¢ craft in formation), piecewise over each segment, using a finite number of
parameters. These approximations may include some combination of the following terms: constant,
polynomial of some order and piecewise regularity, trigonometric in time or some other variable.
For these assumptions and objectives, the following generalized procedure is proposed to formulate
and solve optimal Coulomb reconfigurations:

1. Globalize the starting configuration unstable manifold (X" C W*") and target configuration
stable manifold (X® C W¥). Then let X";; and X®;; denote manifold state vectors for a

particular node 3; and propagation times ¢ and ¢{. Where, the time bounds tum/; and tum/;x,

given by Eq. (8), are to be specified as inputs.
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2. Define U = XS — qu as the manifold state discontinuity Vector for each: ¢}, t7, and 3;.
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applicable) such that a scalar weighted norm function of ¥ (denoted 1)) is minimized. These
times then define a patch point ¢ 7, at which U must be driven to zero for a continuous transfer.
This provides the discontinuous IG, which is on the unstable manifold for ¢ : 0 — (¢f; = t),
and on the stable manifold for ¢ : ¢ty — (t§,; +ty).

3. The number of control segments M/ and segment start times (7} and 77, subject to Egs. (9a)-
(9a)) are also specified by the user, and the uncontrolled duration of the transfer is generally
selected to be large (ie. ty — 71" <ty and 77 — tp < t7,).

to <7 <7 <ty by <7 <7 < (it i) (9a)
Vje{l...M -1} (9b)

4. A vector of independent decision variables X, is selected, along with upper/lower bounds for
each element, with the variables (or parameters) consisting of combinations of the following:

e Impulsive changes to each s/c X (e.g. Av)

e Some parameterization for approximating the s/c control functions (i.e. charge control
and inertial thrust), over each segment.

e Segment start times (7} and 7;) and total manifold propagation times (t;,, and t7,;).

5. A nonlinear programming method is then used to iterate on X, in order to minimize some J,
subject to ¥ = ( (and any other problem specific constraints).

Possible Permutations of the Optimal Transfer Problems

Transfers involving an assortment of Coulomb formations (e.g. number of s/c, s/c masses, force
model, X* as equilibrium or periodic, ect), with various optimization formulations, are within the
scope of the general procedure. Some particularly interesting permutations to the problem formula-
tion, for validating and testing the proposed methodology include:

1. Time(s) free or fixed (7}, tfo/ts variables in X,), value of M, and the tum/l‘; and £/ Timits.
2. What elements of X require continuity (defines 0), and how 1 is computed.
3. The number of manifolds branches: generated, optimized simultaneously, and controlled.

4. What performance index .J is used: power, total AV, or fuel use.

5. How inertial and Coulomb thrusting systems are modeled (chemical, EP, VSI/CSI), parame-
terized, and the bounds placed on the parameters.

6. Path constraints on u(¢) and/or X (t) (of particular interest is to ensure u(t) is nearly orthog-
onal to all s/c relative position vectors to prevent thruster plume impingement).



PARTICLE SWARM OPTIMIZATION

The generalized methodology of the previous section formulated the optimal Coulomb reconfig-
urations as nonlinear programming problems, whose methods of solution can be classified as either
deterministic or stochastic. Deterministic or gradient methods generally require derivatives of .J
with respect to X, and an initial guess (IG) for X, that is within some unknown convergence
tolerance, whereas stochastic methods generally require neither. A gradient method was initially
attempted in this research; however, several numerical difficulties arose, resulting in an inability
to converge, even for relatively simple Coulomb formation transfers. Furthermore, it is highly
non-intuitive to provide quality guesses for s/c potential histories ¢;(¢) and segment start times
7j, necessitated by such methods. The numerical issues are likely the result of: vastly different
orders of magnitude (and response time) between state variables X and variables associated with
electric potentials, high-sensitivity of the manifolds, and error accumulated during propagation of
analytical gradients. With significant effort devoted to proper tuning and scaling, the numerical ob-
stacles might be resolved; however, this method type was abandoned in favor of a stochastic method,
thereby avoiding those numerical and quality IG generation difficulties.

The stochastic method adopted for this research, is a variation of Particle Swarm Optimization
(PSO), first introduced by Kennedy and Eberhart'? and inspired by the motion of bird flocks search-
ing for food. Pontani and Conway (among others) have successfully applied PSO to optimal space-
craft trajectory problems including: impulsive and finite-burn transfers, low-thrust maneuvers, and
targeting of Lyapunov orbit conditions in the CRTBP.!3 In addition to providing persuasive evidence
of the method’s adeptness for solving the generalized optimal reconfigurations, these works indi-
cate PSO to be equally useful in the numerical determination of yet unknown Coulomb formation
equilibrium/periodicity conditions.'?

Moreover, PSO is often able to avoid local minima (unlike gradient methods) and in contrast to
other stochastic methods it is very simple to implement. Its minor drawbacks include occasional
difficulty in handling/satisfying constraints and an increase in computational complexity (relative
to gradient methods).'> Specified bounds on the elements of Xp are required by PSO, but this
requirement is well suited for Coulomb transfers, since the controls are physically limited by s/c
hardware (e.g. power supply and thruster gimbals). Therefore reasonable bounds may be justified
using simple analytical expressions, and such selections are discussed when pertinent. The PSO
implementation utilized in this work, closely follows that of,'* and is summarized as follows:

1. Generate Initial Random Population

A population of M, individuals is created, each with a corresponding parameter vector
X, and an update/direction vector 6X . The X, components are uniformly and randomly
generated within specified upper and lower bounds, and the 6X,, components are generated
similarly with bounds equal to the + of the corresponding X, component range.

2. Begin Iteration, at [p = 1

3. Augmented Performance Index J is computed for each individual at iterate [

The performance index J is augmented with penalty function terms to account for and handle
constraints. Equality constraints (D, = 0, for k = 1... K) are treated according to Eq. (10a),
where the weights ay; must be provided as inputs to the algorithm. Inequality constraints are
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handled differently as specified by Eq. (10b), where a very large J is assigned if any inequality
is violated, thereby enforcing feasibility.

K

J=J+) o |Dp(Xp)l (10a)
k=1

<
I
8

Inequality Violation : 0Xp(l) =0 (10b)

4. Update X, from /X, and Enforce Bounds
The best parameter vector (yielding lowest J ) for each i individual (from [ . ..1[) is denoted
Zi). And the best parameter vector for the entire population (from [y . . .[) is denoted Zyjn

(with global best cost jmm). Each individuals direction and parameter vectors (0Xp (I + 1)
and X (! + 1)) are then updated according to Egs. (11a)-(11c).

§Xp(l+ 1) = CroXp () + Cc [Zp(l) — Xp(1)] Cs [Znin(l) — Xp(1)] (11a)
Co = 1.49445r5(0,1)  Cg = 1.49445r5(0,1)  COf = Hg(o’l) (11b)
Xp(l+1)=Xp(l) +0Xp(l+1) (11c)

Where the terms: r1, 72, and 73 are independent uniform random-numbers distributed over
the interval (0, 1), and computed at each [, and the terms: Cj, C¢, Cg are inertial, cogni-
tive, and social heuristics, respectively. Therefore, C tends to maintain the current direction
dXp (1), Cc tends to move the individual towards its personal best, and C's tends to move the
individual towards the population best. After the update, each component of §X (I + 1) is
forced to be within its bounds. Furthermore, if any X, component violates its bound, that
element is set to be on-boundary, and its corresponding 6 X, component is set equal to zero.

Pontani and Conway use the heuristic functions of Eq. (11b) (these have been optimized, for var-
ious problems, during early PSO performance research), and their procedure stops when a max
number of iterations is reached.!® In this work, the Eq. (11b) heuristics are also adopted, but an
alternate stopping criteria is proposed, where convergence is said to occur when: Z,;, satisfies
all constraints to some tolerance (e1), and the average J of the entire population is within a small
tolerance (¢e2) of jmm. The few variables that must be tuned when using this method are: ay,, M),
and parameter bounds. The most problematic tuning when applied to Coulomb formation transfers
along manifolds is the selection of the o, values (penalty function weights). The PSO method has
difficulty converging to a continuous transfer (i.e. in satisfying ¥ = 0) when the order of magnitude
of any of these weights are set improperly.

NUMERICAL TEST CASES: OPTIMAL COULOMB FORMATION RECONFIGURATIONS

In this section, the generalized methodology for formulating and optimizing Coulomb formation
reconfigurations is numerically demonstrated using test cases associated with the 2-s/c Radial and
Orbit-Normal equilibria (the Along-Track is emitted due to the lack of unstable/stable modes in
the linearized system). The values in Table 2 are used for all numerical results, and closely follow
those used by Natarajan and Schaub in their work on targeting such transfers.® Additionally, only
s/c 1 trajectories are considered in optimizing the transfers, since the CM condition of the Hill
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Table 2. Input Parameters used in Manifold Generation and Numerical Simulations

Parameter Value Units
R 1 meters
Ad 180 meters
ag 4.227 x 107 meters
w 7.2593 x 1077 | rad/sec
ke 8.99 x 10° | Nm

mi1 = my 150 kg

frame model explicitly ensures the continuous transfer of s/c 2. Once optimal reconfigurations are
converged, these trajectories are propagated forward in time to ensure that complete transfers are,
in fact, achieved.

Invariant Manifold Examples for the Radial and Orbit-Normal Configurations

Following the aforementioned procedure, global invariant manifolds associated with the 2-s/c
Radial and Orbit-Normal configurations are generated, using Ly = 25 m and integer values of the
reference (CM) orbital period 7), for the propagation times. All manifolds branches are initiated
using a perturbation magnitude of ¢ = 1.0e~> (perturbations to velocity only so as to simulate an
initial Av), and it should be noted that an increased ¢ value would result in further evolution of
the manifold for the same propagation time. Although the manifolds do depend on parameters (i.e.
w, m1, and my), those illustrated in Figures 4(a)-5(b) do represent the general manifold structures
(independent of w, m1, and ms), since no bifurcations occur in the eigenspaces of these systems.

15¢

15-
==S/C 1 + Branch o KN ==S/C 1 + Branch
10k [**=S/C 1 - Branch o 100 _|===8/C 1 - Branch
==S/C 2 + Branch ~ K ==S/C 2 + Branch
| |==+S/C 2 - Branch Xl , 5 ~ ==«S/C 2 - Branch |
5 - 0" "Q
B £,
= 0 e = L ..
> "4"’ > ~“~~~
5 o 50 RN
l'. “5
‘.O Q“
A0b 10} ,
’0, \Q'
15 i i i i _1§ i i i i i
30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
X (m) X (m)

(a) Stable Manifolds (b) Unstable Manifolds

Figure 4. Radial Configuration Manifolds in Rotating Frame: Propagated with CW EOM for 1 7},

There is substantial symmetry in each s/c manifold branch as well as between stable and unstable
manifolds. The Orbit-Normal configuration manifolds are seen to exhibit an oscillatory frequency
in the x-y plane, and another along the z-axis (resulting in multiple crossings or piercings of the
x-y plane). Next, it is noted that the invariant manifolds associated with the Radial configuration
are planar and Figures 4(a)-4(b) suggest that nearly tangential crossings of stable with unstable
manifold branches are likely (particularly for the half-manifold which spiral inward). Because of
these observations, it is sensible to begin with transfers from one Radial configuration to another,
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Figure 5. Orbit-Normal Manifolds in Rotating Frame: Propagated with CW EOM for 3 T,

which can be expansions (increase in L) or contractions (decrease in L).

Finally, in order to validate the accuracy of the CW linearized gravitational model, the classical
Newtonian gravitational acceleration is used (along with the Coulomb acceleration) in the numerical
integration of the dynamical system. The resulting s/c state histories transformed from inertial to
Hill frame, yield manifolds (not shown) nearly identical to those of Figures 4(a)-5(b).

Assumptions and Optimization Model for the Reconfiguration Test Cases

A limited subset of the many permutations discussed in the generalized optimization methodol-
ogy are tested here. The major assumptions/restrictions used in generating the numerical results
provided may be summarized as follows:

1. Only time-fixed optimal transfers are considered, with equally spaced control segments, and
manifold propagation bounds of: ¢, .. =t .. = 2T, and t}, =t . =T, (which bounds
the total transfer time to be between: 2 — 4 T}, or approximately 2 — 4 days).

2. The only constraints on the problem is to match continuity at the patch point (i.e. U= 0).

3. The charge control is modeled using a constant perturbation dg; from the nominal g, over
the segment j, that is: q;(t) = grey (1 +dg;), forj =1... M

4. Inertial thrusting is modeled with impulsive Av; maneuvers occurring at the M + 1 control
segment nodes, and the performance index .J is: J = Zﬁil [|Av;|

Assuming instantaneous ¢ (or ¢) changes is reasonable so long as |dg;| is bounded such that
steady-state is reached on a time-scale much less than the s/c dynamical response, for the minimum
allowable emission current |I,y;| > |Ien|. This bound is given by Eq. (12a), where a maximum
charge transition time of (Aty)mae, < 1 ms is assumed, and |I.,| = 10pA is inferred from ex-
perimental data.” Another upper bound, as given by Eq. (12b), may be established via Eq. (3), by
enforcing a maximum power requirement P, ;.

(Atq ) max Iout
Qref

Pmaa: = Iout ¢T€f (1 + |5¢‘maﬂf) = (

‘6Qj‘mam - (123)

k:c Iout
Rsc

> Qref (1 + ’5Q|max) (12b)
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Also, it must be ensured that these upper limits exceed a lower bound requirement that the impulse
is substantial enough to go from the stable equilibrium charge to the unstable equilibrium charge at
the patch point (i.e. |Ag;| = |q:fe/;| 065 = |y s — a7 ). As an example of using these expressions,
consider a Radial configuration with Ly = 25 m and R, = 1 m. Eq. (12a) with I,,; = I, then
yields: |dg;| < 0.0065, and Eq. (12b) with Py, = 0.15 W yields: |dg;| < 0.083. Therefore in
this example, the Eq. (12a) bound is more restrictive and therefore is used. Finally, Eq. (13) will
define 1), a weighted norm function of \f', which is minimized in order to determine the manifold

propagation times (¢}, and 7 ;).

min Y(t¥ 7)) = \/[rs(tg) — ru(t9)]% + 1000 [vS(£5) — ve(th)]* T, < t;”/s <27, (13)

Where, ¢} and ¢ are unstable and stable manifold propagation times, and r*/r® and v*/v® denote
unstable/stable position and velocity vectors at these times.

Optimal Radial Expansion and Contraction Examples

As was noted in Figures 4(a)-4(b), the 2-D nature of the Radial configuration manifolds and
likeliness of near cost-free unstable to stable crossings, makes these the simplest transfers to test.
Therefore, a Radial expansion (Lo = 25 m and Ly = 50 m) and a contraction (Lo = 40 m and
Ly = 15 m) are demonstrated here. The manifolds for all four configurations are globalized using
the limits in Eq. (13) and the minimal ¢ is computed numerically for each transfer. This yields the
uncontrolled trajectories shown in Figures 6(a)-6(b), which have total transfer times (¢}, + t7,;) of
approximately: 2.24 days and 2.62 days, respectively.

10+ =Unstable =—Unstable
===Stable 10F ===Stable
u u
s Wt Q mt
[ s s
‘tlol ‘ ttot
u/s e ---,(—“_\“ - u/s
£, Or; £ e, % \011
; - > .'. \

ano*”

5 0 5 10 15 20 25 30 0 5 10 15 20
X (m) X (m)

(a) Expansion of: L = 25 — 50 m (b) Contraction of: L =40 — 15 m

Figure 6. Initial Guess Transfers Between Radial Configurations Along Manifolds

The generalized procedure (with PSO) is then applied to these trajectories, using the assumed
optimization problem model with impulsive charge changes, and the parameters defined in Table 3.
Also, tlf/ * is selected such that 96% of the total trajectory durations are uncontrolled, and |0g;| <
0.1 is chosen (yielding a possible P, = 20 W, however the maximum power necessary in the
converged solutions is less).

Figures 7(a)-7(b) illustrate the optimal converged expansions, resulting from the application of
the method using all parameter values and assumptions previously stated (but Figure 7(a) is the
result of a formulation in which only the unstable branch segments are controlled and Figure 7(b)
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Table 3. Parameters used for Optimal Radial Expansion and Contraction Results

Control | Pop. Size | Tolerance | PSO stop | Max. Interior | Max. Final | Pos./Vel. Penalty

Segs., M Mpop on \17, €1 tol., e |Av| (mm/s) |Av]| (cm/s) Weights, o
3 20 1.0e™ 10 1.0e77 0.5 1 1.0e3 /1.0€°
=Unstable Segs.
10+ ‘ i ===Stable Segs. 10r Unstable Segs.
m Control Seg. Nodes O ., |7 Stable Segs.
: PRt s, B Control Seg. Nodes

o

Ll TEPTITL i

£ —
0 » =
e
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-"'
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'1 O i 1 L 1 L —1 0 ' i I I I I
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(a) Expansion with Unstable Segs. Control Only (b) Expansion with Both Branches Controlled

Figure 7. Optimal Radial Expansion Transfers (L = 25 — 50 m)

results from both branches having controlled segments). The formulation using only unstable seg-
ment control yielded a lower total impulsive cost (AV = 6 mm/sec compared to AV = 19.45
mm/sec). Finally, Figure 8 illustrates an optimal contraction, with both branches controlled, and
resulted in AV = 19.44 mm/sec.

10 ==Unstable Segs.
/I/’.\‘ ===Stable Segs.
- ~\

W Control Seg. Nodes

-5 0 5 10 15 20
X (m)

Figure 8. Optimal Radial Contraction Transfer with Both Branches Controlled (L = 40 — 15 m)

Orbit-Normal Configuration Initial Guess Transfers

The manifolds associated with the Orbit-Normal configuration evolve more slowly, due to those
modes having oscillatory parts, and therefore reconfigurations involving them will generally require
more time. Figure 9(a) shows an IG trajectory for an Orbit-Normal expansion from Ly = 25 m
to Ly = 50 m, resulting from the minimization of v (as defined in Eq. (13)), and yields a total
transfer duration of approximately 4 days. Also, Figures 5(a)-5(b) show that the Orbit-Normal
manifolds have multiple piercings of the x — y plane, with bounded z components. This suggests
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that the Radial and Orbit-Normal manifolds may reasonably contribute to transferring between these
configurations, and therefore lend themselves to the generalized optimization method. An example
of this is shown in Figure 9(b), for a starting Radial configuration with Ly = 10 m and a target
Orbit-Normal configuration with Ly = 50 m (total duration of approximately 5.23 days).
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(a) Orbit-Normal Expansion L = 25 — 50 m (b) Radial to Orbit-Normal Expansion L = 10 — 50 m

Figure 9. Initial Guess Transfers involving Orbit-Normal Configuration Manifolds

These 1G transfers are presented in order to illustrate one direction this research is headed in, and
to indicate some of the difficulties and challenges that are being addressed.

CONCLUSIONS AND FUTURE STUDIES

Active charge control of closely-flying spacecraft (s/c), result in Coulomb forces which supply a
nearly propellant-less propulsion system, that avoids the problem of thruster impingement. These
charged s/c swarms admit numerous equilibrium configurations, that render ‘virtual structures’,
often referred to as Coulomb formations. In the current work, a generalized method has been de-
veloped for formulating and solving optimal transfers from one Coulomb configuration to another.
The method exploits uncontrolled flow along invariant manifolds to complete as much of the tra-
jectory as possible, and therefore is only really useful in minimizing consumables as opposed to
time, since manifold flows are long duration in nature. A unique stochastic method (referred to as
PSO), inspired by the randomized motion of bird flocks, is used to solve the optimal reconfiguration
problems. Numerical results are presented as demonstrative examples of the general reconfiguration
procedure (and stochastic method) using a simple 2-s/c Coulomb formation model.

This research has provided the general method groundwork, but it is currently unclear how tuning
of the stochastic method and optimization problem formulation might effect the quality of the so-
lution; and therefore, more permutations must be explored to answer this question. Also, extended
testing of the method would further validate its generality, including transfers for which: different
configurations (including those with more than 2-s/c) are involved, inertial thrusting is constrained
to be normal (or nearly) to the s/c line-of-sight vectors, continuous control functions are used.
Additional applications for Coulomb formation invariant manifolds are discussed, including their
centrality in the derivation of a class of discrete station-keeping methods. Advantages of using the
PSO method, as opposed to gradient based methods, in solving the reconfiguration problems, are
outlined. Finally, future work will apply PSO to the numerical determination of yet undiscovered
Coulomb formation equilibrium and periodicity conditions (for constant and/or variable charge), a
task for which the method seems well-suited.
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