
Collinear Three-Craft Coulomb Formation Stability

Analysis and Control

Drew R. Jones∗

The University of Texas at Austin, Austin, TX, 78712

and Hanspeter Schaub†

University of Colorado, Boulder, CO, 80309

Controlling the Coulomb forces of charged close-flying craft is a highly efficient way
to enable static formation equilibria, in which craft separation distances remain constant.
But maintaining and maneuvering these inherently unstable formations, particularly with
limited Coulomb force controllability, is challenging. This paper studies 3-craft collinear
equilibria, admitted in the presence of a central-body gravity field. Previous research
establish necessary conditions for 3-craft collinear Coulomb formations, and this paper
develops necessary and sufficient conditions, considering a more accurate Coulomb force
model. Stability properties for each of the resulting configurations are analyzed for the
first time. Specifically, it is shown that each equilibrium can be designed to have marginal
stability normal to the orbit-plane. Also, it is demonstrated that for the radially aligned
configuration, in-plane perturbations can be asymptotically stabilized, using only Coulomb
forces. A charge feedback law is derived, and numerical results are provided. Similar stabil-
ity properties are known and utilized for 2-craft formations, but were previously unknown
for these 3-craft equilibria. Finally, invariant manifolds are generated to illustrate some
dynamical properties of this class of Coulomb formation, also for the first time. The possi-
bility of exploiting the manifold flows to target, minimum inertial thrust, reconfigurations
which realize the useful shape-changing ability of these systems, is discussed.

I. Introduction

Spacecraft charge control was considered as early as 1966 by Cover, Knauer, and Maurer,1 who proposed
to use electrostatic forces to inflate and maintain the shape of a large reflecting mesh. The prospect of

using this concept in spacecraft formation flying is introduced by King et al.,2,3 where the electric potential
(or net charge) of each vehicle is actively controlled, to yield desired inter-craft forces. Close-proximity
spacecraft have many advantages over a single large craft, including: overall mass reduction, shape-changing
ability, and multiple launches for deployment, assembly, and repair. Free-flying formations have applications
in Earth imaging, surveillance, and for enabling separated space-borne interferometry.2,4 Initially, electric
propulsion (EP) systems were proposed for controlling the relative craft motions; however, EP suffers from
limited throttle-ability and introduces the problem of thruster-plume impingement, where thruster ejecta
may damage or impede neighboring craft.2 In contrast, active charge control avoids thruster-plumes, has
fast throttling (ms transitions), and can sustain a given force using less power and fuel than EP.1,2 Charge
control is highly efficient with ISP∼ 1013 s, and is based on existing technology. Active control of spacecraft
charge was successfully executed during the SCATHA5 and ATS6 missions, and currently on the CLUSTER7

mission. other applications for electrostatic thrusting include: advanced docking/rendezvous, autonomous
inspection, contact-less removal of hazardous material, and the deployment/retrieval of instruments.8

Of particular interest in Coulomb formation flying are constant charge ‘virtual structures’, referred to
as static Coulomb formations, in which craft separation distances are in equilibrium. Charge control is
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demonstrated to be a capable and efficient means for establishing and maintaining geometries which appear
frozen, with respect to the Hill-frame, a rotating frame with origin at the formation center-of-mass.2,8

Milli-Newton levels of forces can be produced over dozens of meters using only Watt-levels of electrical
power. Necessary equilibrium conditions are derived for such formations, analytically for less than 5 craft
(numerically otherwise), and thus far, all are dynamically unstable.2,8 It is the 3-craft collinear, Hill-
Frame equilibria, in the presence of linearized gravity, which are considered in the current work. This
research expands upon the work of Berryman and Schaub,8 by deriving sufficient equilibria conditions and by
including the physical effect of plasma shielding. These sufficient conditions yield unique equilibrium regions
with varying stability properties, which are explored in detail for the first time. Analogous explicit existence
criteria are defined for spinning 3-craft collinear equilibria, in the absence of gravitational forces,9,10 and
Wang and Schaub expand these to be sufficient for real-valued charges.11 Stability analyses are carried out
for 2- and 3-craft spinning configurations,12,13 and stable 2-body scenarios are identified when the plasma
shielding is included.12 A recent study by Hogan and Schaub demonstrate marginal in-plane stability of
particular collinear spinning equilibria, if proper separation distance and speed conditions are met.13

Unfortunately, Coulomb thrusting has limited extent (from plasma shielding) and controllability, and
for example cannot alter the overall formation angular momentum.14 Therefore, it is often supplemented
with the less desirable inertial thrust (e.g. EP or chemical), which necessitates hybrid control.15,16 Methods
for maintaining and maneuvering the inherently unstable Coulomb formations remains a challenging and
active area of research. Natarajan and Schaub demonstrate that the Radial 2-craft Hill-frame equilibria has
marginal out-of-plane stability and that charge control alone can asymptotically stabilize in-plane perturba-
tions. In the current research, it is shown that the Radial 3-craft formation shares these properties, and an
in-plane charge feedback law is derived to maintain the formation, substantiated by numerical simulation.
Also, relative instability and eigenvector mode properties associated with all of the 3-craft collinear configu-
rations are analyzed. In particular, marginal stabilities along particular Hill-axes are indicated in the interest
of utilizing these facets to reduce station-keeping control effort. Marginal axis stability is exploited during
controller design for the 2-craft Orbit-Normal configuration15 and 3-craft spinning equilibria.9,11,17,18 In
addition, feedback control is derived by Inampudi for CRTBP equilibrium configurations about Earth-Moon
libration points.,16 and nonlinear controllers are considered and tested for 3-craft spinning equilibria.9,17,18

Another advantageous property of free-flying formations, is that they can change shape and therefore
be reconfigured as necessary for a particular mission. Methods for realizing the shape-changing ability of
Coulomb formations are just being explored, and doing so optimally is very new. Natarajan19 presents a
hybrid (Coulomb and inertial) feedback control to transfer between 2-craft Hill-frame configurations, and
Inampudi adds optimization to those transfers by minimizing: time, fuel, or total power usage.16 Jones and
Schaub outline a generalized procedure for targeting minimal ∆V transfers between Coulomb equilibria, in
which a parameter optimization formulation is used to differentially correct an uncontrolled, and discon-
tinuous, initial trajectory along invariant manifolds.20,21 This method seeks natural flows along manifolds
that nearly ‘hop’ from unstable to stable branches, in order to partially achieve the reconfigurations, and
thereby reduce ∆V . This is analogous to work in which manifolds are used to design low-thrust transfers, in
multi-body gravity fields, for example in the work of Russell and Lam.22 In this paper, invariant manifold
theory is applied to the 3-craft collinear equilibria, for the first time. The intention is to understand how
the method of Jones and Schaub20,21 may be utilized and extended, to achieve minimal ∆V shape-changes
for this class of 3-craft Coulomb formation.

II. Background and General Model

A. Spacecraft Charge Control Background

A conductive craft surface will naturally exchange ions and electrons with the plasma of space, and as a
result will assume a non-zero electric potential φ (measured in Volts). When immersed in a plasma, the
ideal vacuum potential is effectively limited (or shielded) due to interactions with free particles and photons.
The Debye length λd approximates this shielding, such that a charged particle at a distance r > λd is
unaffected by φ. Debye length is a measure of the time-dependent local plasma temperature and density,
and experimental values for it have been acquired in various regimes (e.g. LEO: 0.02−0.4 m, GEO: 140−1500
m, Interplanetary: 7.4− 24 m).2
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A steady-state φ occurs when the net current to the craft surface is zero,2 and altering φ artificially
has substantial mission heritage.5–7 This involves utilizing an electron-gun or similar device to eject elec-
trons/ions into the surrounding plasma with sufficient kinetic energy to escape the ‘potential-well’. Therefore,
the device must have sufficient power to supply a voltage equal to the desired φ, at a current at least greater
than the incoming environmental current (since this will tend to drive φ back to natural equilibrium). In
this work, perfectly spherical spacecraft (radius Rsc) are assumed, and formations near GEO are considered.
Each craft’s net surface charge q is considered as a control, by allowing q to be analytically related to the
truly measurable/controllable parameter φ, via Eq. (1), where kc is the Coulomb constant.

φ = kc
q

Rsc
(1)

Equation (1) holds in a vacuum so long as all spacecraft are assumed to have perfectly conductive outer
surfaces, of uniform charge density. Additionally, it is accurate in the plasma so long as Rsc � λd , and if
the capacitance of a single is not impacted by neighboring charged craft. The former is true in the presumed
GEO altitude, and the latter is a good assumption so long as the craft are sufficiently far apart, which will
be enforced throughout this work.

B. Dynamical Model

Formation dynamics are modeled relative to the Hill-frame, which is centered at and rotates with a nominal
center-of-mass (CM) orbit (assumed circular with semi-major-axis a0 near GEO), as shown in Figure 1.
The Hill-frame axes are labeled: êR for radial, êT for transverse, and êN for normal. The vehicles then
appear statically fixed with respect to the rotating Hill-frame, for equilibrium configurations admitted by
this model. The Hill-Frame introduces a CM constraint given by Eq. (2a), where craft i of mass mi and

Figure 1. Rotating Hill-Frame showing Relative Position Vector ri

net charge qi, has a position vector relative to the CM, denoted ri. The linearized Clohessy-Wiltshire-Hill
gravitational model,23 and a net Coulomb acceleration defined using the Debye-Hückel point-charge model24

are then assumed. This electrostatic force model accounts for partial shielding of each potential, using a
constant and finite λd, and rij = ‖ri − rj‖ denotes the separation distance between crafts i and j. This
approximate model is demonstrated to be highly accurate, both experimentally and numerically, so long as
all rij > 10Rsc .19,25 The acceleration of craft i can then be written as in Eqs. (2b)-(2c), where x, y, and z
denote components along the axes: êR, êT , and êN , respectively. Also, gravitational terms are denoted G,
and Coulomb terms denoted H. Charge products Qij = qi qj are considered, often in this work, to be fully
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controllable/adjustable controls.∑
i

miri = 0 (2a)

r̈i =

 ẍi

ÿi

z̈i

 = Gi + Hi (2b)

r̈i =

 2ωẏi + 3ω2xi

−2ωẋi

−ω2zi

+

[
kc qi
mi

∑
j 6=i

qj e
−rij/λd

r3ij

(
1 +

rij
λd

)
rij

]
(2c)

C. Linear Systems and Invariant Manifold Theory Overview

Any Coulomb formation may be written as a 1st order ODE system, which can be linearized about a reference
state X∗ to yield an ODE system that governs small state perturbations δX, as shown in Eq. (3).

Ẋ = F (X, u, t) δẊ =

(
∂F

∂X

)∣∣∣∣
X∗

δX = A δX (3)

Where, t is time, X is the state vector, and u contains the independent controls. Small state perturbations
δX about some reference trajectory X∗, are then governed by Eq. (3). The Jacobian matrix A of the
linearized ODE system can be transformed to Jordan canonical form. In this way, the state perturbation
vector δX may be decomposed into unstable, stable, and center eigenspaces (Eu, Es, Ec with dimensions
Nu, Ns, and Nc, respectively).26

The global stable and unstable manifolds (if they exist) are subspaces containing all trajectories (or flows)
governed by the original nonlinear system dynamics (F), with the following properties:26

1. Unstable manifold (Wu): set of all trajectories which depart X∗ asymptotically as t→∞.

2. Stable manifold (W s): set of all trajectories which approach X∗ asymptotically as t→ −∞.

3. The manifolds are invariant, and therefore a state contained within Wu or W s remains in that subspace
for all time (e.g. Wu ↔W s flows cannot occur).

4. The manifolds are tangent to their respective eigenspaces, in both ± directions at X∗, and the ± yields
two branches for Wu and W s. Also, the manifold subspaces are 1-D higher than their corresponding
eigenspaces (i.e. Wu has dimension of Nu + 1).

The manifolds are generated by initiating small maneuvers (∆vu/s = ±ε Eu/sv ). Where, E
u/s
v indicates the

velocity components of the normalized eigenvectors which span either Eu or Es, and ε is a small number.
When constructing Wu, the perturbed states Xu = X∗ ± ε Euv are propagated forward in time using F;
whereas, for W s the corresponding perturbed states are propagated backward in time.

III. Three-Craft Collinear Coulomb Formation Existence

Berryman and Schaub8 show that 3-craft collinear equilibrium only exist when the vehicles are aligned
along a Hill-axis, and present necessary equilibria conditions, but without including plasma shielding. The
equilibria conditions do not ensure real-valued charges (potentials), but a set of real equilibrium charges are
known to exist for all Hill-axes and separation distances.8 In this work, necessary and sufficient conditions
are derived, with the inclusion of shielding, for the first time. The sufficient conditions establish bounds on
the charge products to ensure non-imaginary values, and these bounds present discrete equilibria regions or
cases. The stability properties of each of these regions are then analyzed, also for the first time.

A notation, introduced by Berryman and Schaub,8 is adopted here to describe these 3-craft equilibria.
Each craft is located on a single Hill-axis, and therefore a positive scalar di denotes craft i radial distance
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along that line (and ri denotes the signed distance). Since the craft numbering is arbitrary, it is assumed
that: r1 = −d1 < 0 and r3 = d3 > 0, as illustrated in Figure 2.

Figure 2. Three-Craft Collinear Equilibrium Geometry and Notation

Where, dij = |rij | = |ri − rj | and the term ad is used to differentiate between the gravitational acceler-
ations of the Radial (êR), Along-Track (êT ), and Orbit-Normal (êN ) aligned formations. The three scalar
expressions of Eq. (4a) define the 3-craft collinear equilibria, using this notation. These are derived from
Eqs. (2b)-(2c), with all time derivatives equal to zero, and with the substitution of a scaled charge product
Q̃ij , given by Eq. (4b).

admiri =

∑3

j 6=i

 Q̃ij

(
1 +

dij
λd

)
d3ij exp [dij/λd]

rij

 i, j = 1 . . . 3 (4a)

Q̃ij =
kc Qij
ω2

(4b)

One of the Eq. (4a) expressions is linearly dependent, and therefore there are a total of three conditions
(including the CM constraint), and there are five unknowns: the three Q̃ij , d1, and d3. To handle this

under-determined system, Berryman and Schaub8 specify Q̃13, d1 , and d3 (r2 known explicitly), and then
compute Q̃12 and Q̃23 as functions of those quantities. This is also done here, but in addition, bounds on
Q̃13 are defined, which are sufficient to ensure real charges.

A. Necessary Equilibrium Conditions with Shielding

Enforcing the assumed sign convention, shown in Figure 2, on the ri and rij terms in Eq. (4a), and then

solving Q̃12 and Q̃23, results in Eqs. (5a)-(5b). These are necessary conditions for three-craft collinear static
equilibria, where the θij terms account for shielding.

Q̃12 =
1

θ12

[
add1m1 − θ13Q̃13

]
Q̃23 =

1

θ32

[
add3m3 − θ13Q̃13

]
(5a)

θij =
[1 + dij/λd]

d2ij exp[dij/λd]
(5b)

Throughout this work, scaled individual craft charges q̃i are computed using the Eq. (6) convention.

q̃1 =

√
Q̃12Q̃13

Q̃23

q̃2 =
Q̃12

q̃1
q̃3 =

Q̃13

q̃1
(6)

B. Sufficient Conditions for Real Equilibrium with Shielding

An examination of Eqs. (5a)-(5b) for varying values of d3, d1 and Q̃13, enable sufficient equilibria conditions
(bounds on Q̃13) to be defined. These conditions yield regions in the design space, outside of which equilibria
cannot exist, and these are presented on a case by case basis as follows:
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1. Along-Track ( Q̃13 > 0 )

Equilibria exist for all: Q̃13 > 0, d1, and d3.

2. Orbit-Normal

• Case A: ( Q̃13 > 0, Q̃12 > 0, and Q̃23 > 0 )

Equilibria exist so long as: Q̃13 < m1d1/θ13 and Q̃13 < m3d3/θ13.

• Case B: ( Q̃13 > 0, Q̃12 < 0, and Q̃23 < 0 )

Equilibria exist so long as: Q̃13 > m1d1/θ13 and Q̃13 > m3d3/θ13.

3. Radial

• Case A: ( Q̃13 > 0, Q̃12 < 0, and Q̃23 < 0 )

Equilibria exist for all: Q̃13 > 0, d1, and d3.

• Case B: ( Q̃13 < 0, Q̃12 < 0, and Q̃23 > 0 )

Equilibria exist for d1 > d3 (r2 > 0), and so long as: |Q̃13| > 3m3d3/θ13 and |Q̃13| < 3m1d1/θ13.
Therefore, |Q̃13| is bounded above and below based on the values of d1 and d3.

• Case C: ( Q̃13 < 0, Q̃12 > 0, and Q̃23 < 0 )

Equilibria exist for d1 < d3 (r2 < 0), and so long as: |Q̃13| < 3m3d3/θ13 and |Q̃13| > 3m1d1/θ13.
Again |Q̃13| is bounded above and below.

Feasible Q̃13 is finite and bounded for both Orbit-Normal cases and for Radial cases B-C. As such, a feasible
Q̃13, as a function of d1 and d3, may be defined using Eqs. (7a)-(7c). This only ensures a feasible equilibrium
and does not necessarily provide ideal charges or optimization of any sort.

σL = min

(∣∣∣∣adm1d1
θ13

∣∣∣∣ , ∣∣∣∣adm3d3
θ13

∣∣∣∣) σU = max

(∣∣∣∣adm1d1
θ13

∣∣∣∣ , ∣∣∣∣adm3d3
θ13

∣∣∣∣) (7a)

Orbit-Normal Case A: Q̃13 = σL/2 Orbit-Normal Case B: Q̃13 = 1.01 σU (7b)

Radial Cases B-C: Q̃13 = −
(
σL + σU

2

)
(7c)

In addition, trivial cases where Q̃12 = Q̃23 = q2 = 0 (r2 = 0) can also be derived from Eq. (5a).
These cases, defined by Eq. (8), are considered trivial because they simply reduce to the 2-craft Hill-Frame
configurations (along each axis).

Q̃13 =
adm1d1
θ13

=
adm3d3
θ13

d1 =
m3d3
m1

(8)

The only technical difference from the 2-craft cases, is the addition of a non-interacting craft (craft 2), which
is located at the CM (origin). The 2-craft equilibria and their respective stability properties are examined
in detail by, among others: Jones,20 Natarajan and Schaub,27 and Inampudi.16

IV. Three-Craft Collinear Equilibrium Stability Analysis

Each of the equilibrium regions presented in Section III-B have distinct eigenspaces and stability prop-
erties; however, all are dynamically unstable. These differences lead to varied unstable and stable manifold
structures which are demonstrated and discussed here. The relative instability and the properties of eigen-
vector modes are especially important to the design of feedback stabilization strategies.
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A. Linearized Eigenspace Properties

In deriving the linearized ODE system as in Eq. (3), craft 2 is removed via the CM condition, reducing the
system dimension from 18 to 12. The eigenspaces and invariant manifolds are numerically computed using
the Eq. (2c) dynamics with λd = 180 m, and for equal mass craft m1 = m2 = m3 = m = 150 kg, and
a0 = 4.227e7 m. Also, Q̃13 = 1.0e4 is selected, or for Orbit-Normal and Radial cases B-C it is calculated
using Eqs. (7a)-(7c). The eigenspaces for all cases are described as follows:

1. Along-Track

Nu = Ns = 1 (distinct real) - Mode is contained in the êR-êT plane. Perturbations along êN only are
marginally stable.

2. Orbit-Normal Case A:

Nu = Ns = 4 (2 complex pairs) - All unstable/stable modes are contained in the êR-êT plane, and
therefore perturbations along êN only are marginally stable.

3. Orbit-Normal Case B:

Nu = Ns = 3 (1 complex pair, 1 mode real) - The complex mode is contained in the êR-êT plane.

• |d1 − d3| Small: Real mode is contained in the êR-êT plane. Perturbations along êN only are
marginally stable.

• |d1 − d3| Large: Real mode is entirely along êN . Perturbations along êN only are unstable.

4. Radial Case A:

Nu = Ns = 2 (2 distinct real) - Both modes are contained in the êR-êT plane, and perturbations along
êN only are marginally stable.

5. Radial Cases B-C:

• |d1 − d3| Small: Nu = Ns = 3 (1 complex pair, 1 real) - All modes are contained in the êR-êT
plane. Perturbations along êN only are marginally stable.

• |d1 − d3| Large: Nu = Ns = 3 (3 distinct real) - Two modes are contained in the êR-êT plane,
and the other mode is entirely along êN . Perturbations along êN only are unstable.

In this analysis, there are no stability bifurcations (changes to Nu or Ns), within each case, as a function of
d1, d3, and Q̃13. Moreover, no bifurcations occur as λd →∞ (no shielding) for all cases except for the Along-
Track, which bifurcates to Nu = Ns = 0 (all distinct eigenvalues). What is particularly interesting in this
analysis is the differing out-of orbit-plane (êN ) stability for the Orbit-Normal case B and Radial cases B-C,
as a function of |d1 − d3|. This observation is especially important, because it demonstrates that marginal
out-of-plane stability for the Radial configuration (and along-line marginal stability for Orbit-Normal) can
be achieved through careful selection of the distances d1 and d3, and the charge product Q̃13. This stability
property and the conditions under which it arises was until now unknown. For either axis of alignment,
the êN instabilities arise when two craft are in close-proximity and have a repulsive Coulomb force which
becomes larger than the restorative differential gravity force. Therefore, the appearance of this instability
depends on |d1 − d3|, as well as Q̃ij magnitudes.

B. Explanation of Radial Configuration êN Instabilities

All Radial configuration cases exhibit at least one Coulomb force magnitude that is on the order of differential
gravity. For case A, there are attractive forces between inner-craft and a repulsive force between the outer-
craft, and the attractions are many magnitudes larger than the repulsion. For cases B-C, the two craft in
closest proximity have the repulsive force, and all forces are similar in magnitude. Force diagrams for both
cases are presented in Figures 3(a)-3(b), where a larger arrow thickness indicates a larger force magnitude.a

For case A, any out-of-plane perturbations (z components) are quickly restored by the strong inner-craft
forces. Whereas for case B, perturbations can cause the repulsive force acting on craft 2 to dominate the

aIn Figures 3(a)-3(b) and all subsequent figures, S/C is used as a shorthand for spacecraft.
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(a) Case A (b) Case B

Figure 3. 3-Craft Radial Configuration Force Diagrams

restorative forces, and can cause its z component to increase further. This occurs when d23 is small (|d1−d3|
large), and when Q̃23 is large enough. The resulting êN perturbations destabilize the in-plane forces, but as
craft distances increase, differential gravity begins to dominate and the êN perturbations remain bounded.

C. Orbit-Normal Along-Line Marginal Stability

The case A unstable/stable eigenvectors do not have êN components, whereas one of the case B unsta-
ble/stable modes is entirely in the êN direction, when |d1 − d3| is sufficiently large. Therefore, case A
Orbit-Normal configurations are marginally stable along the êN direction, which decouples to 1st order.
This property was known for the 2-craft Orbit-Normal equilibrium, but until now it was unknown that the
3-craft configuration could share this along-line stability. This difference is apparent by analyzing the force
diagrams shown in Figures 4(a)-4(b). The case A configuration has all repulsive forces, and therefore any
contraction of the formation will be repelled, and formation expansion will be countered by differential grav-
ity. In contrast, the case B configuration has attractive forces between inner-craft, and therefore contraction
perturbations between those vehicles will grow, eventually leading to potential collisions. This is important,

(a) Case A (b) Case B

Figure 4. 3-Craft Orbit-Normal Force Diagrams

because so long as d1, d3, and Q̃13 are selected properly, substantial control effort need only be applied to
attitude perturbations. This property is realized by Natarajan and Schaub,15 for the 2-craft configuration,
where the linearized separation distance is shown to represent a stable, simple harmonic oscillator. Numerical
simulation verifies that 3-craft Orbit-Normal configurations can share this facet.

V. Invariant Manifolds for the Three-Craft Collinear Equilibria

Invariant manifolds are analyzed to illustrate some of the previously presented stability properties, but
also to understand how natural motions may be best exploited to aid in reconfiguring the formations. Re-
configurations of interest include: expansions and contractions of the overall distance d13, transfers between
equilibrium regions, and transfers between one axis of alignment to another. Moreover, the manifolds could
be used in order to expel or add a craft by transferring between a 2-craft equilibrium and a 3-craft equilibrium
(with one craft leaving or entering the system).

The linearized ODE systems and assumptions of Section IV are used in all numerically generated invariant
manifolds which follow. The manifolds are initiated with a ∆v perturbation (for each craft) along the
associated eigenspace vectors, with ε = 0.1 mm/sec. Also, it is known that all Orbit-Normal and Radial
cases B-C (for |d1 − d3| large) unstable/stable manifolds are in <6, whereas the remaining cases are in <4,
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since modal motion is confined to the êR-êT plane. Radial case A unstable manifolds are illustrated in
Figure 5(a) which shows that motion is confined to the reference orbit-plane. There is strong attractive
Coulomb interaction between 2 of the inner-craft on each branch, which makes the trajectories have many
intersections. Figure 5(b) demonstrates the out-of-plane instability for case B, resulting in a <3 (in position)
manifold structure. On one branch, the attractive forces bring all vehicles together, which in turn, increases

(a) Case A: 1.0 Tp, d3 = 25 m, and Q̃13 = 1.0e4 (b) Case B: 0.5 Tp, d3 = 18 m, and Q̃13 = −2.56e7

Figure 5. 3-Craft Radial Unstable Manifolds for d1 = 30 m

the repulsive force on craft 2, thereby giving it an increasing z component. On the other branch, the repulsive
force on craft 2 causes it to move away from the other two craft. For both branches, the purely real êN
unstable mode is quite distinct.

(a) Unstable (b) Stable

Figure 6. 3-Craft Along-Track Invariant Manifolds for: 1.0 Tp, d1 = 30 m, d3 = 25 m, and Q̃13 = 1.0e4

(a) Case A: Q̃13 = 5.9e6 (b) Case B: Q̃13 = 1.43e7

Figure 7. 3-Craft Orbit-Normal Unstable Manifolds for: 1.0 Tp, d1 = 30 m, d3 = 25 m,

Next, Along-Track stable and unstable manifolds are illustrated in Figures 6(a)-6(b). There is great
symmetry between stable and unstable branches, and it is rather intuitive to visualize a transfer trajectory
from unstable to stable manifolds, which could expand or contract this formation with little control effort.
Finally, some Orbit-Normal unstable manifolds are illustrated in Figures 7(a)-7(b). The case A manifolds
resemble the 2-craft Orbit-Normal manifolds, which also exhibit along-line marginal stability. The case B
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manifolds have strong Coulomb interaction between craft 2 and 3, because of their attractive force. It is this
attraction which can cause the êN unstable mode for that case.

A. Reconfigurations between Three-Craft Collinear Equilibria along Manifolds

As mentioned previously, expansions and contractions between Along-Track configurations are relatively
intuitive to visualize. Figure 8 demonstrates an example initial guess (IG) trajectory which would expand
the Along-Track configuration, increasing d13 by 10 meters and also moving r2 from +5 meters to +3 meters.
This is an IG only, because there are state discontinuities between unstable and stable manifolds at the patch

Figure 8. Along-Track Initial Guess Expansion Trajectory along Invariant Manifolds: d1 = 30 → 36 m, d3 =
25→ 34 m, Both Manifolds Propagated 1 Tp

point (endpoints of near manifold intersection on plot). Nevertheless, it is likely that these discontinuities
could be differentially corrected, to yield a continuous transfer with little control effort, as demonstrated by
Jones and Schaub20,21 for 2-craft Hill-Frame equilibria, where ∆V was minimized.

Another IG expansion example, is illustrated in Figure 9 for the Orbit-Normal case A configuration,
and for an increased d13 of 20 m (r2 constant). This transfer is more difficult to visualize because it is

Figure 9. Orbit-Normal Initial Guess Expansion Trajectory along Invariant Manifolds: d1 = 20 → 30 m,
d3 = 15→ 25 m, Both Manifolds Propagated 0.7 Tp

<3 (in position), and because the velocity directions are hard to ascertain. In addition, for expansions of
this configuration, the manifolds are best exploited when the spacecraft numbering changes. Therefore,
in Figure 9 craft 1 moves to d3 slot, craft 2 to d1, and craft 3 to r2. This is completely reasonable,
assuming equal mass craft, but discontinuities of charge at the patch point could be large. These initial
trajectories introduce the possibility of extending the previously developed method for converging fuel-
optimal reconfigurations,20,21 to the 3-craft collinear formations.

The Radial configuration manifolds are not as readily useful to aid in contraction and expansion transfers.
Fortunately, these configurations turn out to be fully controllable in the êR − êT plane using only charge
control, as demonstrated in Section VI. This means that charge control alone can be used to maintain,
expand, and contract these cases, and therefore using manifolds to reduce inertial thrust cost is unnecessary.
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VI. Three-Craft Collinear Formation: Orbit-Plane Feedback Stabilization

The Along-Track and Radial configurations, which have unstable/stable manifolds contained in the êR-
êT plane (reference orbit plane), are considered here. These exhibit marginal out-of orbit-plane stability,
and therefore a reduced system controller is designed, considering only planar êR-êT dynamics. An initial
controller is developed assuming: Debye shielding is negligible, all craft have equal mass (m = 150 kg), and
craft 2 dynamics are explicitly removed via the CM constraint. These conditions are enforced, and scaled
charge products Q̃ij , defined by Eq. (4b), are substituted into the êR-êT terms of Eq. (2c). This yields scaled
craft 1 and 3 accelerations, given by Eqs. (9a)-(9b).

r̈1
ω2

= r′′1 =
1

ω2

[
ẍi

ÿi

]
=

[
2ẏ1/ω + 3x1

−2ẋ1/ω

]
+

Q̃13

m d313

[
x1 − x3
y1 − y3

]
+

Q̃12

m d312

[
2 x1 + x3

2 y1 + y3

]
(9a)

r̈3
ω2

= r′′3 =
1

ω2

[
ẍ3

ÿ3

]
=

[
2ẏ3/ω + 3x3

−2ẋ3/ω

]
+

Q̃13

m d313

[
x3 − x1
y3 − y1

]
+

Q̃23

m d312

[
2 x3 + x1

2 y3 + y1

]
(9b)

Where, the substitution of the scaled charge products has introduced a time transformation into the equa-
tions of motion, as defined by Eq. (10). This transform to the variable τ reduces numerical integration error,
and helps to prevent poor scaling of the linearized dynamics’ matrices.

dτ = ωdt (ζ)
′

=
dζ

dτ
=

1

ω

dζ

dt
(10)

Next, Eqs. (9a)-(9b) are linearized about the equilibrium state X∗, yielding a time-invariant, controlled
system, defined in general state-space form by Eq. (11). The matrices A and B are given explicitly for the
Radial configuration by Eqs. (12a)-(12b), where Q̃∗ij (q̃∗i ), dij , and ri denote equilibrium: scaled charge
products (scaled charges), separation distances, and signed distances, respectively.

δX′ = A δX + B u δX =


δr1

δr3

δv1

δv3


8x1

u =

 δq1

δq2

δq3


3x1

(11)

A =



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

3− 4Q̃∗
12

md312
− 2Q̃∗

13
md313

0 − 2Q̃∗
12

md312
+

2Q̃∗
13

md313
0 0 2 0 0

0
2Q̃∗

12

md312
+

Q̃∗
13

md313
0

Q̃∗
12

md312
− Q̃∗

13

md313
−2 0 0 0

− 2Q̃∗
23

md323
+

2Q̃∗
13

md313
0 3− 4Q̃∗

23
md323

− 2Q̃∗
13

md313
0 0 0 0 2

0
Q̃∗

23

md323
− Q̃∗

13

md313
0

2Q̃∗
23

md323
+

Q̃∗
13

md313
0 0 −2 0


(12a)

B =



04x1 04x1 04x1

|q̃∗1 |q̃
∗
2 (2r1+r3)

md312
+
|q̃∗1 |q̃

∗
3 (r1−r3)
md313

|q̃∗2 |q̃
∗
1 (2r1+r3)

md312

|q̃∗3 |q̃
∗
1 (r1−r3)
md313

0 0 0

|q̃∗1 |q̃
∗
3 (r3−r1)
md313

|q̃∗2 |q̃
∗
3 (2r3+r1)

md323

|q̃∗3 |q̃
∗
2 (2r3+r1)

md323
+
|q̃∗3 |q̃

∗
1 (r3−r1)
md313

0 0 0


(12b)

Where, the |q̃∗i | are added as scaling parameters to ensure that the B matrix has terms with equal order
of magnitude and on the order of terms in A. This numerical scaling is crucial in successfully computing
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feedback gains numerically. Also, using the individual charges as opposed to the charge products ensures
that real-values are maintained during control operation. With this scaling, the craft charges are given by
Eq. (13), where K is a 3x8 full-state feedback gain matrix. q̃1(τ)

q̃2(τ)

q̃3(τ)

 =

 q̃∗1
q̃∗2
q̃∗3

+

 |q̃∗1 | δq1(τ)

|q̃∗2 | δq2(τ)

|q̃∗3 | δq3(τ)

 u =

 δq1(τ)

δq2(τ)

δq3(τ)

 = −K δX(τ) (13)

The Along-Track and all Radial cases have linearized systems which are fully controllable, made possible
because of the coupling between x and y perturbations in the A matrix.28 In contrast, the Orbit-Normal
configurations are not fully controllable in the êR-êT plane, and therefore some inertial thrusting would be
required to maintain them. Moreover, it is demonstrated here, for the first time, that Radial case A êR-êT
planar perturbations can be asymptotically stabilized, using only charge control (no inertial thrust). An
analogous result is demonstrated by Natarajan and Schaub,27 for the Radial 2-craft configuration. From
the state-space model of Eqs. (12a)-(12b), the gain matrix K is determined by solving the standard Linear-
Quadratic Regulator (LQR) problem.28

A. Radial Feedback Controller: Numerical Simulations

For the presented simulations, the LQR weighting matrices Q and R are both set to identity. The Coulomb
configurations are numerically integrated using the nonlinear equations of motion given by Eqs. (9a)-(9b).
Also, the same values for m, a0, and Q̃13 used in Section IV (and in generating the manifolds) are used here,
for a nominal configuration of: d1 = 30 m and d3 = 25 m. Figures 10(a)-10(b) illustrate position perturbation
and charge control histories after an initial ∆v to crafts 1 and 3, with equal x and y components of 0.01
mm/s. Next, Figures 11(a)-11(b) show these histories, but for initial disturbances in position to all three
craft, thereby demonstrating additional robustness in the control.

(a) Position Perturbations (b) Charge History

Figure 10. Radial Case A: Planar Response and Control for Initial ∆v Perturbations to S/C 1 and 3

(a) Position Perturbations (b) Charge History

Figure 11. Radial Case A: Planar Response and Control for Initial ∆r Perturbations to all S/C

The initial position perturbations for Figures 11(a)-11(b) are: ∆x1 = −0.5 m, ∆x2 = 0.18 m, ∆x3 = 0.32
m, ∆y1 = 0.08 m, ∆y2 = −0.056 m, and ∆y3 = −0.024 m. Note that the required nominal charge levels
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for this Radial equilibria are very small, µC order, and the control variations in the charges required to
remove the initial disturbances are relatively small. The nominal charge magnitudes and charge variation
magnitudes are very feasible. In fact, the maximum power would be around 80 W, for Rsc = 1 m, and with
sufficient current to overcome the incoming plasma current.

B. Radial Feedback Controller with Plasma Shielding

Because there are no bifurcations in the Radial configuration eigenspace as function of λd, the controller
methodology is easily altered to include shielding. For brevity, the linearized matrices A and B with plasma
shielding included (and simulation results) are omitted; however, it is verified in numerical simulation that
small planar perturbations can still be asymptotically stabilized. Also, it has been verified that small devi-
ation in craft masses (including unequal masses) can be accommodated by this methodology. Nevertheless,
this control design is preliminary, and therefore relaxing the assumptions used and improving robustness
would be necessary prior to implementation. Specifically, the controlled response characteristics could be
refined, to achieve desired performance, by tuning the LQR weighting matrices.

C. Along-Track Feedback Control

Natarajan showed that there are no real-valued gains which can be used to stabilize 2-craft Along-Track
Coulomb formations, thereby necessitating some inertial thrusting.19 In contrast, the 3-craft Along-Track
configuration does satisfy the linear controllability condition; however, it is very nearly uncontrollable numer-
ically, and highly sensitive to perturbations. This system is said to be nearly uncontrollable, by computing
a measure of the distance to an uncontrollable state-space system using the method of Boley and Lu.29

The measure is small for the Along-Track, but relatively large for the Radial cases. These difficulties make
a charge-only controller impractical, and perhaps even impossible, for the Along-Track formation. A co-
ordinate change in the dynamics or the adoption of a nonlinear controller might alleviate some of these
difficulties, otherwise a hybrid control would be necessary to stabilize this formation.

VII. Conclusions

Necessary and sufficient conditions which enable, 3-craft collinear, static formations are derived in the
presence of a linearized gravity model, and with the inclusion of partial Coulomb force shielding. A detailed
stability analysis for each of the resulting equilibrium is carried out, which demonstrates that marginal
stability, normal to the orbit-plane, can be achieved, although it is not assured for all cases. Furthermore,
numerical simulation proves that a linearized charge feedback law (without inertial thrusting) is capable of
asymptotically stabilizing in-plane perturbations, for the Radial configuration. These results were previously
unknown, and demonstrate how the dynamical properties of these systems may be utilized to reduce station-
keeping control effort. Control laws to stabilize the remaining 3-craft collinear configurations are lacking, but
this paper presents stability and controllability properties for these cases, which suggest that some inertial
thrusting will be required. Further work should focus on these challenges, as well as improve the robustness of
the Radial configuration control law, relax some of the assumptions used, and possibly incorporate nonlinear
control. Lastly, prominent continuous disturbances, such as solar radiation pressure, should be tested to
validate the control designs.

Invariant manifold theory is applied to all equilibrium configurations, and examples are given which
illustrate possible scenarios in which the manifolds may be exploited to reduce the cost associated with re-
shaping these formations. This analysis suggests that a previously demonstrated methodology for targeting
minimal ∆V transfers between 2-craft Coulomb equilibria, along manifolds, can be applied to the 3-craft
configurations as well. Future research will continue to investigate initial trajectories where unstable manifold
flows nearly intersect stable flows, and thereby lend themselves to differential correction to match continuity.
Such reconfigurations realize the advantageous property of Coulomb formations to change shape using charge
control, preferably with as little inertial thrusting as possible.
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